000181233 001__ 181233
000181233 005__ 20240229145643.0
000181233 0247_ $$2doi$$a10.1148/radiol.212692
000181233 0247_ $$2pmid$$apmid:35972360
000181233 0247_ $$2ISSN$$a0033-8419
000181233 0247_ $$2ISSN$$a1527-1315
000181233 0247_ $$2altmetric$$aaltmetric:134215060
000181233 037__ $$aDKFZ-2022-01879
000181233 041__ $$aEnglish
000181233 082__ $$a610
000181233 1001_ $$0P:(DE-He78)c6d2d9aa8c2d4ecd0dd6f96d2f40b7c3$$aTavakoli, Anoshirwan Andrej$$b0$$eFirst author
000181233 245__ $$aContribution of Dynamic Contrast-enhanced and Diffusion MRI to PI-RADS for Detecting Clinically Significant Prostate Cancer.
000181233 260__ $$aOak Brook, Ill.$$bSoc.$$c2023
000181233 3367_ $$2DRIVER$$aarticle
000181233 3367_ $$2DataCite$$aOutput Types/Journal article
000181233 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1671718179_4920
000181233 3367_ $$2BibTeX$$aARTICLE
000181233 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000181233 3367_ $$00$$2EndNote$$aJournal Article
000181233 500__ $$a#EA:E010#LA:E010# / 2023 Jan;306(1):186-199
000181233 520__ $$aBackground Prostate Imaging Reporting and Data System (PI-RADS) version 2.0 requires multiparametric MRI of the prostate, including diffusion-weighted imaging (DWI) and dynamic contrast-enhanced (DCE) imaging sequences; however, the contribution of DCE imaging remains unclear. Purpose To assess whether DCE imaging in addition to apparent diffusion coefficient (ADC) and normalized T2 values improves PI-RADS version 2.0 for prediction of clinically significant prostate cancer (csPCa). Materials and Methods In this retrospective study, clinically reported PI-RADS lesions in consecutive men who underwent 3-T multiparametric MRI (T2-weighted, DWI, and DCE MRI) from May 2015 to September 2016 were analyzed quantitatively and compared with systematic and targeted MRI-transrectal US fusion biopsy. The normalized T2 signal (nT2), ADC measurement, mean early-phase DCE signal (mDCE), and heuristic DCE parameters were calculated. Logistic regression analysis indicated the most predictive DCE parameters for csPCa (Gleason grade group ≥2). Receiver operating characteristic parameter models were compared using the Obuchowski test. Recursive partitioning analysis determined ADC and mDCE value ranges for combined use with PI-RADS. Results Overall, 260 men (median age, 64 years [IQR, 58-69 years]) with 432 lesions (csPCa [n = 152] and no csPCa [n = 280]) were included. The mDCE parameter was predictive of csPCa when accounting for the ADC and nT2 parameter in the peripheral zone (odds ratio [OR], 1.76; 95% CI: 1.30, 2.44; P = .001) but not the transition zone (OR, 1.17; 95% CI: 0.81, 1.69; P = .41). Recursive partitioning analysis selected an ADC cutoff of 0.897 × 10-3 mm2/sec (P = .04) as a classifier for peripheral zone lesions with a PI-RADS score assessed on the ADC map (hereafter, ADC PI-RADS) of 3. The mDCE parameter did not differentiate ADC PI-RADS 3 lesions (P = .11), but classified lesions with ADC PI-RADS scores greater than 3 with low ADC values (less than 0.903 × 10-3 mm2/sec, P < .001) into groups with csPCa rates of 70% and 97% (P = .008). A lesion size cutoff of 1.5 cm and qualitative DCE parameters were not defined as classifiers according to recursive partitioning (P > .05). Conclusion Quantitative or qualitative dynamic contrast-enhanced MRI was not relevant for Prostate Imaging Reporting and Data System (PI-RADS) 3 lesion risk stratification, while quantitative apparent diffusion coefficient (ADC) values were helpful in upgrading PI-RADS 3 and PI-RADS 4 lesions. Quantitative ADC measurement may be more important for risk stratification than current methods in future versions of PI-RADS. © RSNA, 2022 Online supplemental material is available for this article See also the editorial by Goh in this issue.
000181233 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000181233 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000181233 7001_ $$aHielscher, Thomas$$b1
000181233 7001_ $$0P:(DE-He78)98f3f4d9279b90a4fc6aa36dce929576$$aBadura, Patrick$$b2
000181233 7001_ $$aGörtz, Magdalena$$b3
000181233 7001_ $$0P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6$$aKuder, Tristan Anselm$$b4$$udkfz
000181233 7001_ $$0P:(DE-He78)77bc493068847c689d894d2eda891c0c$$aGnirs, Regula$$b5
000181233 7001_ $$aSchwab, Constantin$$b6
000181233 7001_ $$00000-0003-3798-2039$$aHohenfellner, Markus$$b7
000181233 7001_ $$0P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aSchlemmer, Heinz-Peter$$b8
000181233 7001_ $$aBonekamp, David$$b9$$eLast author
000181233 773__ $$0PERI:(DE-600)2010588-5$$a10.1148/radiol.212692$$gp. 212692$$n1$$p186-199$$tRadiology$$v306$$x0033-8419$$y2023
000181233 909CO $$ooai:inrepo02.dkfz.de:181233$$pVDB
000181233 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c6d2d9aa8c2d4ecd0dd6f96d2f40b7c3$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000181233 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)98f3f4d9279b90a4fc6aa36dce929576$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000181233 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000181233 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)77bc493068847c689d894d2eda891c0c$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000181233 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000181233 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000181233 9141_ $$y2022
000181233 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000181233 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-27
000181233 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000181233 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-19
000181233 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-19
000181233 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-19
000181233 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bRADIOLOGY : 2022$$d2023-08-19
000181233 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-19
000181233 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-19
000181233 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-19
000181233 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-19
000181233 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-08-19
000181233 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bRADIOLOGY : 2022$$d2023-08-19
000181233 9202_ $$0I:(DE-He78)E010-20160331$$kE010$$lE010 Radiologie$$x0
000181233 9201_ $$0I:(DE-He78)E010-20160331$$kE010$$lE010 Radiologie$$x0
000181233 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x1
000181233 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x2
000181233 9200_ $$0I:(DE-He78)E010-20160331$$kE010$$lE010 Radiologie$$x0
000181233 980__ $$ajournal
000181233 980__ $$aVDB
000181233 980__ $$aI:(DE-He78)E010-20160331
000181233 980__ $$aI:(DE-He78)C060-20160331
000181233 980__ $$aI:(DE-He78)E020-20160331
000181233 980__ $$aUNRESTRICTED