000181312 001__ 181312
000181312 005__ 20240301130855.0
000181312 0247_ $$2doi$$a10.1002/mp.12612
000181312 0247_ $$2pmid$$apmid:28976586
000181312 0247_ $$2ISSN$$a0094-2405
000181312 0247_ $$2ISSN$$a1522-8541
000181312 0247_ $$2ISSN$$a2473-4209
000181312 037__ $$aDKFZ-2022-01939
000181312 041__ $$aEnglish
000181312 082__ $$a610
000181312 1001_ $$aRietsch, Stefan H G$$b0
000181312 245__ $$aAn 8-channel transceiver 7-channel receive RF coil setup for high SNR ultrahigh-field MRI of the shoulder at 7T.
000181312 260__ $$aCollege Park, Md.$$bAAPM$$c2017
000181312 3367_ $$2DRIVER$$aarticle
000181312 3367_ $$2DataCite$$aOutput Types/Journal article
000181312 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1661156532_8349
000181312 3367_ $$2BibTeX$$aARTICLE
000181312 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000181312 3367_ $$00$$2EndNote$$aJournal Article
000181312 520__ $$aIn this work, we present an 8-channel transceiver (Tx/Rx) 7-channel receive (Rx) radiofrequency (RF) coil setup for 7 T ultrahigh-field MR imaging of the shoulder.A C-shaped 8-channel Tx/Rx coil was combined with an anatomically close-fitting 7-channel Rx-only coil. The safety and performance parameters of this coil setup were evaluated on the bench and in phantom experiments. The 7 T MR imaging performance of the shoulder RF coil setup was evaluated in in vivo measurements using a 3D DESS, a 2D PD-weighted TSE sequence, and safety supervision based on virtual observation points.Distinct SNR gain and acceleration capabilities provided by the additional 7-channel Rx-only coil were demonstrated in phantom and in vivo measurements. The power efficiency indicated good performance of each channel and a maximum B1+ of 19 μT if the hardware RF power limits of the MR system were exploited. MR imaging of the shoulder was demonstrated with clinically excellent image quality and submillimeter spatial resolution.The presented 8-channel transceiver 7-channel receive RF coil setup was successfully applied for in vivo 7 T MRI of the shoulder providing a clear SNR gain vs the transceiver array without the additional receive array. Homogeneous images across the shoulder region were obtained using 8-channel subject-specific phase-only RF shimming.
000181312 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000181312 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000181312 650_7 $$2Other$$a7 Tesla (7T)
000181312 650_7 $$2Other$$aRF antenna array
000181312 650_7 $$2Other$$aradio frequency (RF)
000181312 650_7 $$2Other$$ashoulder
000181312 650_7 $$2Other$$aultrahigh-field MRI
000181312 650_2 $$2MeSH$$aHumans
000181312 650_2 $$2MeSH$$aMagnetic Resonance Imaging: instrumentation
000181312 650_2 $$2MeSH$$aPhantoms, Imaging
000181312 650_2 $$2MeSH$$aRadio Waves
000181312 650_2 $$2MeSH$$aShoulder: diagnostic imaging
000181312 650_2 $$2MeSH$$aSignal-To-Noise Ratio
000181312 7001_ $$aPfaffenrot, Viktor$$b1
000181312 7001_ $$aBitz, Andreas K$$b2
000181312 7001_ $$aOrzada, Stephan$$b3
000181312 7001_ $$aBrunheim, Sascha$$b4
000181312 7001_ $$aLazik-Palm, Andrea$$b5
000181312 7001_ $$aTheysohn, Jens M$$b6
000181312 7001_ $$0P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aLadd, Mark E$$b7$$udkfz
000181312 7001_ $$aQuick, Harald H$$b8
000181312 7001_ $$aKraff, Oliver$$b9
000181312 773__ $$0PERI:(DE-600)1466421-5$$a10.1002/mp.12612$$gVol. 44, no. 12, p. 6195 - 6208$$n12$$p6195 - 6208$$tMedical physics$$v44$$x0094-2405$$y2017
000181312 909CO $$ooai:inrepo02.dkfz.de:181312$$pVDB
000181312 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000181312 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000181312 9141_ $$y2017
000181312 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-02-02$$wger
000181312 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000181312 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-02
000181312 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000181312 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-02-02
000181312 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000181312 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2021-02-02
000181312 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000181312 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000181312 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMED PHYS : 2019$$d2021-02-02
000181312 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000181312 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-02
000181312 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-02
000181312 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-02
000181312 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000181312 980__ $$ajournal
000181312 980__ $$aVDB
000181312 980__ $$aI:(DE-He78)E020-20160331
000181312 980__ $$aUNRESTRICTED