Home > Publications database > Liquid Biopsies Using Plasma Exosomal Nucleic Acids and Plasma Cell-Free DNA Compared with Clinical Outcomes of Patients with Advanced Cancers. > print |
001 | 181329 | ||
005 | 20240301125646.0 | ||
024 | 7 | _ | |a 10.1158/1078-0432.CCR-17-2007 |2 doi |
024 | 7 | _ | |a pmid:29051321 |2 pmid |
024 | 7 | _ | |a pmc:PMC5754253 |2 pmc |
024 | 7 | _ | |a 1078-0432 |2 ISSN |
024 | 7 | _ | |a 1557-3265 |2 ISSN |
024 | 7 | _ | |a altmetric:27667601 |2 altmetric |
037 | _ | _ | |a DKFZ-2022-01956 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Möhrmann, Lino |0 P:(DE-He78)79e92bc6260b7a24abe4daf4378bf19c |b 0 |e First author |u dkfz |
245 | _ | _ | |a Liquid Biopsies Using Plasma Exosomal Nucleic Acids and Plasma Cell-Free DNA Compared with Clinical Outcomes of Patients with Advanced Cancers. |
260 | _ | _ | |a Philadelphia, Pa. [u.a.] |c 2018 |b AACR |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1661174552_31348 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a POF Topic: 317 |
520 | _ | _ | |a Purpose: Blood-based liquid biopsies offer easy access to genomic material for molecular diagnostics in cancer. Commonly used cell-free DNA (cfDNA) originates from dying cells. Exosomal nucleic acids (exoNAs) originate from living cells, which can better reflect underlying cancer biology.Experimental Design: Next-generation sequencing (NGS) was used to test exoNA, and droplet digital PCR (ddPCR) and BEAMing PCR were used to test cfDNA for BRAFV600, KRASG12/G13, and EGFRexon19del/L858R mutations in 43 patients with progressing advanced cancers. Results were compared with clinical testing of archival tumor tissue and clinical outcomes.Results: Forty-one patients had BRAF, KRAS, or EGFR mutations in tumor tissue. These mutations were detected by NGS in 95% of plasma exoNA samples, by ddPCR in 92% of cfDNA samples, and by BEAMing in 97% cfDNA samples. NGS of exoNA did not detect any mutations not present in tumor, whereas ddPCR and BEAMing detected one and two such mutations, respectively. Compared with patients with high exoNA mutation allelic frequency (MAF), patients with low MAF had longer median survival (11.8 vs. 5.9 months; P = 0.006) and time to treatment failure (7.4 vs. 2.3 months; P = 0.009). A low amount of exoNA was associated with partial response and stable disease ≥6 months (P = 0.006).Conclusions: NGS of plasma exoNA for common BRAF, KRAS, and EGFR mutations has high sensitivity compared with clinical testing of archival tumor and testing of plasma cfDNA. Low exoNA MAF is an independent prognostic factor for longer survival. Clin Cancer Res; 24(1); 181-8. ©2017 AACR. |
536 | _ | _ | |a 317 - Translational cancer research (POF3-317) |0 G:(DE-HGF)POF3-317 |c POF3-317 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a Biomarkers, Tumor |2 NLM Chemicals |
650 | _ | 7 | |a Cell-Free Nucleic Acids |2 NLM Chemicals |
650 | _ | 7 | |a KRAS protein, human |2 NLM Chemicals |
650 | _ | 7 | |a EGFR protein, human |0 EC 2.7.10.1 |2 NLM Chemicals |
650 | _ | 7 | |a ErbB Receptors |0 EC 2.7.10.1 |2 NLM Chemicals |
650 | _ | 7 | |a BRAF protein, human |0 EC 2.7.11.1 |2 NLM Chemicals |
650 | _ | 7 | |a Proto-Oncogene Proteins B-raf |0 EC 2.7.11.1 |2 NLM Chemicals |
650 | _ | 7 | |a Proto-Oncogene Proteins p21(ras) |0 EC 3.6.5.2 |2 NLM Chemicals |
650 | _ | 2 | |a Adult |2 MeSH |
650 | _ | 2 | |a Aged |2 MeSH |
650 | _ | 2 | |a Biomarkers, Tumor |2 MeSH |
650 | _ | 2 | |a Cell-Free Nucleic Acids |2 MeSH |
650 | _ | 2 | |a ErbB Receptors: blood |2 MeSH |
650 | _ | 2 | |a ErbB Receptors: genetics |2 MeSH |
650 | _ | 2 | |a Exosomes |2 MeSH |
650 | _ | 2 | |a Female |2 MeSH |
650 | _ | 2 | |a Genetic Testing |2 MeSH |
650 | _ | 2 | |a Humans |2 MeSH |
650 | _ | 2 | |a Liquid Biopsy: methods |2 MeSH |
650 | _ | 2 | |a Male |2 MeSH |
650 | _ | 2 | |a Middle Aged |2 MeSH |
650 | _ | 2 | |a Mutation |2 MeSH |
650 | _ | 2 | |a Neoplasm Grading |2 MeSH |
650 | _ | 2 | |a Neoplasm Staging |2 MeSH |
650 | _ | 2 | |a Neoplasms: blood |2 MeSH |
650 | _ | 2 | |a Neoplasms: diagnosis |2 MeSH |
650 | _ | 2 | |a Neoplasms: mortality |2 MeSH |
650 | _ | 2 | |a Patient Outcome Assessment |2 MeSH |
650 | _ | 2 | |a Proto-Oncogene Proteins B-raf: blood |2 MeSH |
650 | _ | 2 | |a Proto-Oncogene Proteins B-raf: genetics |2 MeSH |
650 | _ | 2 | |a Proto-Oncogene Proteins p21(ras): blood |2 MeSH |
650 | _ | 2 | |a Proto-Oncogene Proteins p21(ras): genetics |2 MeSH |
650 | _ | 2 | |a Survival Analysis |2 MeSH |
700 | 1 | _ | |a Huang, Helen J |b 1 |
700 | 1 | _ | |a Hong, David S |b 2 |
700 | 1 | _ | |a Tsimberidou, Apostolia M |b 3 |
700 | 1 | _ | |a Fu, Siqing |b 4 |
700 | 1 | _ | |a Piha-Paul, Sarina A |b 5 |
700 | 1 | _ | |a Subbiah, Vivek |b 6 |
700 | 1 | _ | |a Karp, Daniel D |b 7 |
700 | 1 | _ | |a Naing, Aung |b 8 |
700 | 1 | _ | |a Krug, Anne |b 9 |
700 | 1 | _ | |a Enderle, Daniel |b 10 |
700 | 1 | _ | |a Priewasser, Tina |b 11 |
700 | 1 | _ | |a Noerholm, Mikkel |b 12 |
700 | 1 | _ | |a Eitan, Erez |b 13 |
700 | 1 | _ | |a Coticchia, Christine |b 14 |
700 | 1 | _ | |a Stoll, Georg |b 15 |
700 | 1 | _ | |a Jordan, Lisa-Marie |b 16 |
700 | 1 | _ | |a Eng, Cathy |b 17 |
700 | 1 | _ | |a Kopetz, E Scott |b 18 |
700 | 1 | _ | |a Skog, Johan |b 19 |
700 | 1 | _ | |a Meric-Bernstam, Funda |b 20 |
700 | 1 | _ | |a Janku, Filip |b 21 |
773 | _ | _ | |a 10.1158/1078-0432.CCR-17-2007 |g Vol. 24, no. 1, p. 181 - 188 |0 PERI:(DE-600)2036787-9 |n 1 |p 181 - 188 |t Clinical cancer research |v 24 |y 2018 |x 1078-0432 |
909 | C | O | |o oai:inrepo02.dkfz.de:181329 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)79e92bc6260b7a24abe4daf4378bf19c |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF3-310 |0 G:(DE-HGF)POF3-317 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-300 |4 G:(DE-HGF)POF |v Translational cancer research |x 0 |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-02-03 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-02-03 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CLIN CANCER RES : 2019 |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-02-03 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b CLIN CANCER RES : 2019 |d 2021-02-03 |
920 | 1 | _ | |0 I:(DE-He78)G100-20160331 |k G100 |l Translationale Onkologie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)G100-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|