000181398 001__ 181398
000181398 005__ 20240229145646.0
000181398 0247_ $$2doi$$a10.1002/nbm.4819
000181398 0247_ $$2pmid$$apmid:35994248
000181398 0247_ $$2ISSN$$a0952-3480
000181398 0247_ $$2ISSN$$a1099-1492
000181398 0247_ $$2altmetric$$aaltmetric:134872429
000181398 037__ $$aDKFZ-2022-01966
000181398 041__ $$aEnglish
000181398 082__ $$a610
000181398 1001_ $$00000-0002-4599-1122$$aGast, Lena V$$b0
000181398 245__ $$aAssessing muscle-specific potassium concentrations in human lower leg using 39 K MRI.
000181398 260__ $$aNew York, NY$$bWiley$$c2023
000181398 3367_ $$2DRIVER$$aarticle
000181398 3367_ $$2DataCite$$aOutput Types/Journal article
000181398 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1670585596_24789
000181398 3367_ $$2BibTeX$$aARTICLE
000181398 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000181398 3367_ $$00$$2EndNote$$aJournal Article
000181398 500__ $$a#LA:E020# / 2023 Jan;36(1):e4819
000181398 520__ $$aNon-invasively assessing tissue potassium concentrations (TPC) using 39 K MRI could give valuable information on physiological processes connected to various pathologies. However, due to inherently low 39 K MR image resolution and strong signal blurring, a reliable measurement of the TPC is challenging. The aim of this work was to investigate the feasibility of a muscle-specific TPC determination with focus on the influence of a varying residual quadrupolar interaction in human lower leg muscles.The quantification accuracy of a muscle-specific TPC determination was first assessed using simulated 39 K MRI data. In vivo 39 K and corresponding 23 Na MRI data of healthy lower leg muscles (n=14, 7 female) were acquired on a 7T MR system using a double-resonant 23 Na/39 K birdcage Tx/Rx RF coil. Additional 1 H MR images were acquired at a 3T MR system and used for tissue segmentation. Quantification of TPC was performed after a region-based partial volume correction (PVC) using five external reference phantoms.Simulations not only underlined the importance of a PVC for correctly assessing muscle-specific TPC values, but also revealed a strong impact of a varying residual quadrupolar interaction between different muscle regions on the measured TPC. Using 39 K T2 * decay curves, we found a significantly higher residual quadrupolar interaction in tibialis anterior muscle (TA, ωq = 194±28 Hz) compared to gastrocnemius muscle (medial/lateral head, GM/GL, ωq = 151±25 Hz), and soleus muscle (SOL, ωq = 102±32 Hz). If considered in the PVC, TPC in individual muscles was similar (TPC= 98±11/96±14/99±8/100±12 mM in GM/GL/SOL/TA). Comparison with tissue sodium concentrations suggested that residual quadrupolar interactions might also influence the 23 Na MRI signal of lower leg muscles.A TPC determination of individual lower leg muscles is feasible and can therefore be applied in future studies. Considering a varying residual quadrupolar interaction for PVC of 39 K MRI data is essential to reliably assess potassium concentrations in individual muscles.
000181398 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000181398 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000181398 650_7 $$2Other$$a7 Tesla
000181398 650_7 $$2Other$$amuscle MRI
000181398 650_7 $$2Other$$apotassium (39K) MRI
000181398 650_7 $$2Other$$asodium (23Na) MRI
000181398 650_7 $$2Other$$atissue potassium concentration
000181398 650_7 $$2Other$$atissue sodium concentration
000181398 650_7 $$2Other$$aultrahigh field strengths
000181398 7001_ $$aBaier, Laura-Marie$$b1
000181398 7001_ $$aChaudry, Oliver$$b2
000181398 7001_ $$aMeixner, Christian R$$b3
000181398 7001_ $$aMüller, Max$$b4
000181398 7001_ $$aEngelke, Klaus$$b5
000181398 7001_ $$aUder, Michael$$b6
000181398 7001_ $$00000-0002-2897-5411$$aHeiss, Rafael$$b7
000181398 7001_ $$0P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aNagel, Armin$$b8$$eLast author$$udkfz
000181398 773__ $$0PERI:(DE-600)2002003-X$$a10.1002/nbm.4819$$n1$$pe4819$$tNMR in biomedicine$$v36$$x0952-3480$$y2023
000181398 909CO $$ooai:inrepo02.dkfz.de:181398$$pVDB
000181398 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000181398 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000181398 9141_ $$y2022
000181398 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-28$$wger
000181398 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000181398 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000181398 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-22$$wger
000181398 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-22
000181398 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-22
000181398 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-22
000181398 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-22
000181398 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-22
000181398 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNMR BIOMED : 2022$$d2023-10-22
000181398 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-22
000181398 9202_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000181398 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000181398 980__ $$ajournal
000181398 980__ $$aVDB
000181398 980__ $$aI:(DE-He78)E020-20160331
000181398 980__ $$aUNRESTRICTED