001     181398
005     20240229145646.0
024 7 _ |a 10.1002/nbm.4819
|2 doi
024 7 _ |a pmid:35994248
|2 pmid
024 7 _ |a 0952-3480
|2 ISSN
024 7 _ |a 1099-1492
|2 ISSN
024 7 _ |a altmetric:134872429
|2 altmetric
037 _ _ |a DKFZ-2022-01966
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Gast, Lena V
|0 0000-0002-4599-1122
|b 0
245 _ _ |a Assessing muscle-specific potassium concentrations in human lower leg using 39 K MRI.
260 _ _ |a New York, NY
|c 2023
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1670585596_24789
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #LA:E020# / 2023 Jan;36(1):e4819
520 _ _ |a Non-invasively assessing tissue potassium concentrations (TPC) using 39 K MRI could give valuable information on physiological processes connected to various pathologies. However, due to inherently low 39 K MR image resolution and strong signal blurring, a reliable measurement of the TPC is challenging. The aim of this work was to investigate the feasibility of a muscle-specific TPC determination with focus on the influence of a varying residual quadrupolar interaction in human lower leg muscles.The quantification accuracy of a muscle-specific TPC determination was first assessed using simulated 39 K MRI data. In vivo 39 K and corresponding 23 Na MRI data of healthy lower leg muscles (n=14, 7 female) were acquired on a 7T MR system using a double-resonant 23 Na/39 K birdcage Tx/Rx RF coil. Additional 1 H MR images were acquired at a 3T MR system and used for tissue segmentation. Quantification of TPC was performed after a region-based partial volume correction (PVC) using five external reference phantoms.Simulations not only underlined the importance of a PVC for correctly assessing muscle-specific TPC values, but also revealed a strong impact of a varying residual quadrupolar interaction between different muscle regions on the measured TPC. Using 39 K T2 * decay curves, we found a significantly higher residual quadrupolar interaction in tibialis anterior muscle (TA, ωq = 194±28 Hz) compared to gastrocnemius muscle (medial/lateral head, GM/GL, ωq = 151±25 Hz), and soleus muscle (SOL, ωq = 102±32 Hz). If considered in the PVC, TPC in individual muscles was similar (TPC= 98±11/96±14/99±8/100±12 mM in GM/GL/SOL/TA). Comparison with tissue sodium concentrations suggested that residual quadrupolar interactions might also influence the 23 Na MRI signal of lower leg muscles.A TPC determination of individual lower leg muscles is feasible and can therefore be applied in future studies. Considering a varying residual quadrupolar interaction for PVC of 39 K MRI data is essential to reliably assess potassium concentrations in individual muscles.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a 7 Tesla
|2 Other
650 _ 7 |a muscle MRI
|2 Other
650 _ 7 |a potassium (39K) MRI
|2 Other
650 _ 7 |a sodium (23Na) MRI
|2 Other
650 _ 7 |a tissue potassium concentration
|2 Other
650 _ 7 |a tissue sodium concentration
|2 Other
650 _ 7 |a ultrahigh field strengths
|2 Other
700 1 _ |a Baier, Laura-Marie
|b 1
700 1 _ |a Chaudry, Oliver
|b 2
700 1 _ |a Meixner, Christian R
|b 3
700 1 _ |a Müller, Max
|b 4
700 1 _ |a Engelke, Klaus
|b 5
700 1 _ |a Uder, Michael
|b 6
700 1 _ |a Heiss, Rafael
|0 0000-0002-2897-5411
|b 7
700 1 _ |a Nagel, Armin
|0 P:(DE-He78)054fd7a5195b75b11fbdc5c360276011
|b 8
|e Last author
|u dkfz
773 _ _ |a 10.1002/nbm.4819
|0 PERI:(DE-600)2002003-X
|n 1
|p e4819
|t NMR in biomedicine
|v 36
|y 2023
|x 0952-3480
909 C O |p VDB
|o oai:inrepo02.dkfz.de:181398
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)054fd7a5195b75b11fbdc5c360276011
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2022
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-22
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NMR BIOMED : 2022
|d 2023-10-22
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-22
920 2 _ |0 I:(DE-He78)E020-20160331
|k E020
|l E020 Med. Physik in der Radiologie
|x 0
920 1 _ |0 I:(DE-He78)E020-20160331
|k E020
|l E020 Med. Physik in der Radiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21