001     181641
005     20240229145652.0
024 7 _ |a 10.1093/gerona/glac041
|2 doi
024 7 _ |a pmid:35172329
|2 pmid
024 7 _ |a 1079-5006
|2 ISSN
024 7 _ |a 1758-535X
|2 ISSN
024 7 _ |a altmetric:123232181
|2 altmetric
037 _ _ |a DKFZ-2022-02135
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Fiorito, Giovanni
|0 0000-0002-7651-5452
|b 0
245 _ _ |a The Role of Epigenetic Clocks in Explaining Educational Inequalities in Mortality: A Multicohort Study and Meta-analysis.
260 _ _ |a Oxford [u.a.]
|c 2022
|b Oxford Univ. Pr.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1662975364_4970
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Educational inequalities in all-cause mortality have been observed for decades. However, the underlying biological mechanisms are not well known. We aimed to assess the role of DNA methylation changes in blood captured by epigenetic clocks in explaining these inequalities. Data were from 8 prospective population-based cohort studies, representing 13 021 participants. First, educational inequalities and their portion explained by Horvath DNAmAge, Hannum DNAmAge, DNAmPhenoAge, and DNAmGrimAge epigenetic clocks were assessed in each cohort via counterfactual-based mediation models, on both absolute (hazard difference) and relative (hazard ratio) scales, and by sex. Second, estimates from each cohort were pooled through a random effect meta-analysis model. Men with low education had excess mortality from all causes of 57 deaths per 10 000 person-years (95% confidence interval [CI]: 38, 76) compared with their more advantaged counterparts. For women, the excess mortality was 4 deaths per 10 000 person-years (95% CI: -11, 19). On the relative scale, educational inequalities corresponded to hazard ratios of 1.33 (95% CI: 1.12, 1.57) for men and 1.15 (95% CI: 0.96, 1.37) for women. DNAmGrimAge accounted for the largest proportion, approximately 50%, of the educational inequalities for men, while the proportion was negligible for women. Most of this mediation was explained by differential effects of unhealthy lifestyles and morbidities of the World Health Organization (WHO) risk factors for premature mortality. These results support DNA methylation-based epigenetic aging as a signature of educational inequalities in life expectancy emphasizing the need for policies to address the unequal social distribution of these WHO risk factors.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Biomarkers
|2 Other
650 _ 7 |a DNA methylation
|2 Other
650 _ 7 |a Longevity
|2 Other
650 _ 7 |a Social inequalities
|2 Other
650 _ 2 |a Educational Status
|2 MeSH
650 _ 2 |a Epigenesis, Genetic
|2 MeSH
650 _ 2 |a Epigenomics
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Mortality
|2 MeSH
650 _ 2 |a Prospective Studies
|2 MeSH
650 _ 2 |a Risk Factors
|2 MeSH
650 _ 2 |a Socioeconomic Factors
|2 MeSH
700 1 _ |a Pedron, Sara
|b 1
700 1 _ |a Ochoa-Rosales, Carolina
|b 2
700 1 _ |a McCrory, Cathal
|0 0000-0001-6575-2367
|b 3
700 1 _ |a Polidoro, Silvia
|b 4
700 1 _ |a Zhang, Yan
|0 P:(DE-He78)d19149dd97b17ce55e70abd2f9e64d3d
|b 5
700 1 _ |a Dugué, Pierre-Antoine
|0 0000-0003-2736-3023
|b 6
700 1 _ |a Ratliff, Scott
|b 7
700 1 _ |a Zhao, Wei N
|b 8
700 1 _ |a McKay, Gareth J
|0 0000-0001-8197-6280
|b 9
700 1 _ |a Costa, Giuseppe
|b 10
700 1 _ |a Solinas, Maria Giuliana
|b 11
700 1 _ |a Harris, Kathleen Mullan
|b 12
700 1 _ |a Tumino, Rosario
|0 0000-0003-2666-414X
|b 13
700 1 _ |a Grioni, Sara
|0 0000-0002-5891-8426
|b 14
700 1 _ |a Ricceri, Fulvio
|0 0000-0001-8749-9737
|b 15
700 1 _ |a Panico, Salvatore
|0 0000-0002-5498-8312
|b 16
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 17
|u dkfz
700 1 _ |a Schwettmann, Lars
|b 18
700 1 _ |a Waldenberger, Melanie
|b 19
700 1 _ |a Matias-Garcia, Pamela R
|b 20
700 1 _ |a Peters, Annette
|0 0000-0001-6645-0985
|b 21
700 1 _ |a Hodge, Allison
|b 22
700 1 _ |a Giles, Graham G
|b 23
700 1 _ |a Schmitz, Lauren L
|b 24
700 1 _ |a Levine, Morgan
|b 25
700 1 _ |a Smith, Jennifer A
|0 0000-0002-3575-5468
|b 26
700 1 _ |a Liu, Yongmei
|b 27
700 1 _ |a Kee, Frank
|b 28
700 1 _ |a Young, Ian S
|b 29
700 1 _ |a McGuinness, Bernadette
|b 30
700 1 _ |a McKnight, Amy Jayne
|b 31
700 1 _ |a van Meurs, Joyce
|b 32
700 1 _ |a Voortman, Trudy
|0 0000-0003-2830-6813
|b 33
700 1 _ |a Kenny, Rose A
|b 34
700 1 _ |a consortium, Lifepath
|b 35
|e Collaboration Author
700 1 _ |a Vineis, Paolo
|0 0000-0001-8935-4566
|b 36
700 1 _ |a Carmeli, Cristian
|0 0000-0002-1463-4587
|b 37
773 _ _ |a 10.1093/gerona/glac041
|g Vol. 77, no. 9, p. 1750 - 1759
|0 PERI:(DE-600)2043927-1
|n 9
|p 1750 - 1759
|t The journals of gerontology / A
|v 77
|y 2022
|x 1079-5006
909 C O |o oai:inrepo02.dkfz.de:181641
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)d19149dd97b17ce55e70abd2f9e64d3d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 17
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-17
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1180
|2 StatID
|b Current Contents - Social and Behavioral Sciences
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0130
|2 StatID
|b Social Sciences Citation Index
|d 2022-11-17
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J GERONTOL A-BIOL : 2021
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-17
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-17
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J GERONTOL A-BIOL : 2021
|d 2022-11-17
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21