001     181663
005     20240522101634.0
024 7 _ |a 10.1016/j.lanwpc.2021.100372
|2 doi
024 7 _ |a altmetric:120261705
|2 altmetric
024 7 _ |a pmid:35028630
|2 pmid
037 _ _ |a DKFZ-2022-02147
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Zhu, Anna
|0 P:(DE-He78)e71d98af5fac4f81eb58e74b7b3095c2
|b 0
|e First author
|u dkfz
245 _ _ |a Interaction between plant-based dietary pattern and air pollution on cognitive function: a prospective cohort analysis of Chinese older adults
260 _ _ |a [Amsterdam]
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1716365769_7220
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Missing Journal: The Lancet Regional Health - Western Pacific (The Lancet Regional Health - Western Pacific) = 2666-6065 (import from CrossRef, Journals: inrepo02.dkfz.de) / #EA:C070# / epub
520 _ _ |a Background.Air pollution is a risk factor for poor cognitive function, while a plant-based dietary pattern is associated with better cognitive function. We aimed to explore their interaction with cognitive function among older adults.Methods.We used a prospective cohort of old individuals, including 6525 participants of the Chinese Longitudinal Healthy Longevity Survey (CLHLS), aged 65-110 years and with normal cognition at baseline. Air pollution measurement was derived using satellite-derived annual average fine particulate matter (PM2.5) concentrations based on residential locations. Plant-based diet index (PDI) was calculated using survey responses to assess the dietary pattern. Repeated measures of the Mini-Mental State Examination (MMSE) were utilized to assess cognitive function. We applied the Cox proportional hazard regression to explore the associations and further stratified the analysis by PDI.Findings.During a median of 5·6-year follow-up, 1537 (23·6%) out of 6525 participants with normal cognition at baseline developed poor cognitive function (MMSE <18). Living in areas with the highest quintile of cumulative PM2.5 was associated with a 46% increase in the risk of developing poor cognitive function (hazard ratio (HR): 1·46, 95% confidence interval (CI): 1·20, 1·77), compared to those living in areas with the lowest quintile. We observed a significant interaction between cumulative PM2.5 and PDI (p-interaction: 0·04), with the corresponding associations of cumulative PM2.5 being more pronounced among participants with lower PDI (HR: 1·68, 95% CI: 1·26, 2·24) than those with higher PDI (HR: 1·28, 95% CI: 0·98, 1·68).Interpretation.Plant-based dietary pattern may attenuate detrimental impacts of PM2.5 on cognitive function among older adults. Adherence to the plant-based dietary pattern could be used to prevent adverse neurological effects caused by air pollution, especially in developing regions.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: inrepo02.dkfz.de
700 1 _ |a Chen, Hui
|b 1
700 1 _ |a Shen, Jie
|b 2
700 1 _ |a Wang, Xiaoxi
|0 0000-0003-2678-9217
|b 3
700 1 _ |a Li, Zhihui
|b 4
700 1 _ |a Zhao, Ai
|b 5
700 1 _ |a Shi, Xiaoming
|b 6
700 1 _ |a Yan, Lijing
|b 7
700 1 _ |a Zeng, Yi
|b 8
700 1 _ |a Yuan, Changzheng
|b 9
700 1 _ |a Ji, John S.
|0 0000-0002-5002-118X
|b 10
773 _ _ |a 10.1016/j.lanwpc.2021.100372
|g Vol. 20, p. 100372 -
|0 PERI:(DE-600)3052289-4
|p 100372
|t The lancet / Regional Health
|v 20
|y 2022
|x 2666-6065
909 C O |p VDB
|o oai:inrepo02.dkfz.de:181663
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)e71d98af5fac4f81eb58e74b7b3095c2
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2022
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b LANCET REG HEALTH-W : 2021
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-12-02T14:08:29Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-12-02T14:08:29Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-12-02T14:08:29Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1180
|2 StatID
|b Current Contents - Social and Behavioral Sciences
|d 2022-11-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0130
|2 StatID
|b Social Sciences Citation Index
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-09
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b LANCET REG HEALTH-W : 2021
|d 2022-11-09
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-09
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-09
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b LANCET REG HEALTH-W : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T14:51:31Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T14:51:31Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T14:51:31Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1180
|2 StatID
|b Current Contents - Social and Behavioral Sciences
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0130
|2 StatID
|b Social Sciences Citation Index
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b LANCET REG HEALTH-W : 2022
|d 2023-10-27
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 0 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21