Home > Publications database > Interaction between plant-based dietary pattern and air pollution on cognitive function: a prospective cohort analysis of Chinese older adults > print |
001 | 181663 | ||
005 | 20240522101634.0 | ||
024 | 7 | _ | |a 10.1016/j.lanwpc.2021.100372 |2 doi |
024 | 7 | _ | |a altmetric:120261705 |2 altmetric |
024 | 7 | _ | |a pmid:35028630 |2 pmid |
037 | _ | _ | |a DKFZ-2022-02147 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Zhu, Anna |0 P:(DE-He78)e71d98af5fac4f81eb58e74b7b3095c2 |b 0 |e First author |u dkfz |
245 | _ | _ | |a Interaction between plant-based dietary pattern and air pollution on cognitive function: a prospective cohort analysis of Chinese older adults |
260 | _ | _ | |a [Amsterdam] |c 2022 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1716365769_7220 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Missing Journal: The Lancet Regional Health - Western Pacific (The Lancet Regional Health - Western Pacific) = 2666-6065 (import from CrossRef, Journals: inrepo02.dkfz.de) / #EA:C070# / epub |
520 | _ | _ | |a Background.Air pollution is a risk factor for poor cognitive function, while a plant-based dietary pattern is associated with better cognitive function. We aimed to explore their interaction with cognitive function among older adults.Methods.We used a prospective cohort of old individuals, including 6525 participants of the Chinese Longitudinal Healthy Longevity Survey (CLHLS), aged 65-110 years and with normal cognition at baseline. Air pollution measurement was derived using satellite-derived annual average fine particulate matter (PM2.5) concentrations based on residential locations. Plant-based diet index (PDI) was calculated using survey responses to assess the dietary pattern. Repeated measures of the Mini-Mental State Examination (MMSE) were utilized to assess cognitive function. We applied the Cox proportional hazard regression to explore the associations and further stratified the analysis by PDI.Findings.During a median of 5·6-year follow-up, 1537 (23·6%) out of 6525 participants with normal cognition at baseline developed poor cognitive function (MMSE <18). Living in areas with the highest quintile of cumulative PM2.5 was associated with a 46% increase in the risk of developing poor cognitive function (hazard ratio (HR): 1·46, 95% confidence interval (CI): 1·20, 1·77), compared to those living in areas with the lowest quintile. We observed a significant interaction between cumulative PM2.5 and PDI (p-interaction: 0·04), with the corresponding associations of cumulative PM2.5 being more pronounced among participants with lower PDI (HR: 1·68, 95% CI: 1·26, 2·24) than those with higher PDI (HR: 1·28, 95% CI: 0·98, 1·68).Interpretation.Plant-based dietary pattern may attenuate detrimental impacts of PM2.5 on cognitive function among older adults. Adherence to the plant-based dietary pattern could be used to prevent adverse neurological effects caused by air pollution, especially in developing regions. |
536 | _ | _ | |a 313 - Krebsrisikofaktoren und Prävention (POF4-313) |0 G:(DE-HGF)POF4-313 |c POF4-313 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: inrepo02.dkfz.de |
700 | 1 | _ | |a Chen, Hui |b 1 |
700 | 1 | _ | |a Shen, Jie |b 2 |
700 | 1 | _ | |a Wang, Xiaoxi |0 0000-0003-2678-9217 |b 3 |
700 | 1 | _ | |a Li, Zhihui |b 4 |
700 | 1 | _ | |a Zhao, Ai |b 5 |
700 | 1 | _ | |a Shi, Xiaoming |b 6 |
700 | 1 | _ | |a Yan, Lijing |b 7 |
700 | 1 | _ | |a Zeng, Yi |b 8 |
700 | 1 | _ | |a Yuan, Changzheng |b 9 |
700 | 1 | _ | |a Ji, John S. |0 0000-0002-5002-118X |b 10 |
773 | _ | _ | |a 10.1016/j.lanwpc.2021.100372 |g Vol. 20, p. 100372 - |0 PERI:(DE-600)3052289-4 |p 100372 |t The lancet / Regional Health |v 20 |y 2022 |x 2666-6065 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:181663 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)e71d98af5fac4f81eb58e74b7b3095c2 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-313 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Krebsrisikofaktoren und Prävention |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b LANCET REG HEALTH-W : 2021 |d 2022-11-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-12-02T14:08:29Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-12-02T14:08:29Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2021-12-02T14:08:29Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2022-11-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1180 |2 StatID |b Current Contents - Social and Behavioral Sciences |d 2022-11-09 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2022-11-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0130 |2 StatID |b Social Sciences Citation Index |d 2022-11-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-09 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b LANCET REG HEALTH-W : 2021 |d 2022-11-09 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2022-11-09 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2022-11-09 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b LANCET REG HEALTH-W : 2022 |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-04-12T14:51:31Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-04-12T14:51:31Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-04-12T14:51:31Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-10-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1180 |2 StatID |b Current Contents - Social and Behavioral Sciences |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0130 |2 StatID |b Social Sciences Citation Index |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2023-10-27 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b LANCET REG HEALTH-W : 2022 |d 2023-10-27 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-10-27 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-10-27 |
920 | 1 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie und Alternf. |x 0 |
920 | 0 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie und Alternf. |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C070-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|