000181706 001__ 181706
000181706 005__ 20240229145654.0
000181706 0247_ $$2doi$$a10.1093/noajnl/vdac138
000181706 0247_ $$2altmetric$$aaltmetric:135961976
000181706 0247_ $$2pmid$$apmid:36105388
000181706 037__ $$aDKFZ-2022-02176
000181706 041__ $$aEnglish
000181706 082__ $$a610
000181706 1001_ $$aPflüger, Irada$$b0
000181706 245__ $$aAutomated detection and quantification of brain metastases on clinical MRI data using artificial neural networks
000181706 260__ $$aOxford$$bOxford University Press$$c2022
000181706 3367_ $$2DRIVER$$aarticle
000181706 3367_ $$2DataCite$$aOutput Types/Journal article
000181706 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1663334084_7133
000181706 3367_ $$2BibTeX$$aARTICLE
000181706 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000181706 3367_ $$00$$2EndNote$$aJournal Article
000181706 500__ $$a#EA:E230#
000181706 520__ $$aBackground: Reliable detection and precise volumetric quantification of brain metastases (BM) on MRI are essential for guiding treatment decisions. Here we evaluate the potential of artificial neural networks (ANN) for automated detection and quantification of BM.Methods: A consecutive series of 308 patients with BM was used for developing an ANN (with a 4:1 split for training/testing) for automated volumetric assessment of contrast-enhancing tumors (CE) and non-enhancing FLAIR signal abnormality including edema (NEE). An independent consecutive series of 30 patients was used for external testing. Performance was assessed case-wise for CE and NEE and lesion-wise for CE using the case-wise/lesion-wise DICE-coefficient (C/L-DICE), positive predictive value (L-PPV) and sensitivity (C/L-Sensitivity).Results: The performance of detecting CE lesions on the validation dataset was not significantly affected when evaluating different volumetric thresholds (0.001-0.2 cm3; P = .2028). The median L-DICE and median C-DICE for CE lesions were 0.78 (IQR = 0.6-0.91) and 0.90 (IQR = 0.85-0.94) in the institutional as well as 0.79 (IQR = 0.67-0.82) and 0.84 (IQR = 0.76-0.89) in the external test dataset. The corresponding median L-Sensitivity and median L-PPV were 0.81 (IQR = 0.63-0.92) and 0.79 (IQR = 0.63-0.93) in the institutional test dataset, as compared to 0.85 (IQR = 0.76-0.94) and 0.76 (IQR = 0.68-0.88) in the external test dataset. The median C-DICE for NEE was 0.96 (IQR = 0.92-0.97) in the institutional test dataset as compared to 0.85 (IQR = 0.72-0.91) in the external test dataset.Conclusion: The developed ANN-based algorithm (publicly available at www.github.com/NeuroAI-HD/HD-BM) allows reliable detection and precise volumetric quantification of CE and NEE compartments in patients with BM.
000181706 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000181706 588__ $$aDataset connected to CrossRef, Journals: inrepo02.dkfz.de
000181706 7001_ $$0P:(DE-He78)4412d586f86ca57943732a2b9318c44f$$aWald, Tassilo$$b1$$eFirst author$$udkfz
000181706 7001_ $$0P:(DE-He78)7ea9af59d03ec7deb982a0e0562358fa$$aIsensee, Fabian$$b2$$udkfz
000181706 7001_ $$aSchell, Marianne$$b3
000181706 7001_ $$aMeredig, Hagen$$b4
000181706 7001_ $$aSchlamp, Kai$$b5
000181706 7001_ $$00000-0001-5231-9097$$aBernhardt, Denise$$b6
000181706 7001_ $$aBrugnara, Gianluca$$b7
000181706 7001_ $$aHeußel, Claus Peter$$b8
000181706 7001_ $$0P:(DE-He78)8714da4e45acfa36ce87c291443a9218$$aDebus, Jürgen$$b9$$udkfz
000181706 7001_ $$0P:(DE-He78)92e9783ca7025f36ce14e12cd348d2ee$$aWick, Wolfgang$$b10$$udkfz
000181706 7001_ $$00000-0002-9094-6769$$aBendszus, Martin$$b11
000181706 7001_ $$0P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3$$aMaier-Hein, Klaus$$b12$$udkfz
000181706 7001_ $$aVollmuth, Philipp$$b13
000181706 773__ $$0PERI:(DE-600)3009682-0$$a10.1093/noajnl/vdac138$$gVol. 4, no. 1, p. vdac138$$n1$$p1-11$$tNeuro-oncology advances$$v4$$x2632-2498$$y2022
000181706 909CO $$ooai:inrepo02.dkfz.de:181706$$pVDB
000181706 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4412d586f86ca57943732a2b9318c44f$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000181706 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7ea9af59d03ec7deb982a0e0562358fa$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000181706 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8714da4e45acfa36ce87c291443a9218$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000181706 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)92e9783ca7025f36ce14e12cd348d2ee$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000181706 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ
000181706 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000181706 9141_ $$y2022
000181706 915__ $$0LIC:(DE-HGF)CCBYNCNV$$2V:(DE-HGF)$$aCreative Commons Attribution-NonCommercial CC BY-NC (No Version)$$bDOAJ$$d2020-09-05
000181706 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-05
000181706 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-05
000181706 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000181706 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-09-23T13:25:59Z
000181706 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-09-23T13:25:59Z
000181706 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-09-23T13:25:59Z
000181706 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000181706 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2022-11-12
000181706 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000181706 9200_ $$0I:(DE-He78)E230-20160331$$kE230$$lE230 Medizinische Bildverarbeitung$$x0
000181706 9201_ $$0I:(DE-He78)E230-20160331$$kE230$$lE230 Medizinische Bildverarbeitung$$x0
000181706 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x1
000181706 9201_ $$0I:(DE-He78)E050-20160331$$kE050$$lE050 KKE Strahlentherapie$$x2
000181706 9201_ $$0I:(DE-He78)B320-20160331$$kB320$$lKKE Neuroonkologie$$x3
000181706 980__ $$ajournal
000181706 980__ $$aVDB
000181706 980__ $$aI:(DE-He78)E230-20160331
000181706 980__ $$aI:(DE-He78)HD01-20160331
000181706 980__ $$aI:(DE-He78)E050-20160331
000181706 980__ $$aI:(DE-He78)B320-20160331
000181706 980__ $$aUNRESTRICTED