| Home > Publications database > Automated detection and quantification of brain metastases on clinical MRI data using artificial neural networks > print |
| 001 | 181706 | ||
| 005 | 20240229145654.0 | ||
| 024 | 7 | _ | |a 10.1093/noajnl/vdac138 |2 doi |
| 024 | 7 | _ | |a altmetric:135961976 |2 altmetric |
| 024 | 7 | _ | |a pmid:36105388 |2 pmid |
| 037 | _ | _ | |a DKFZ-2022-02176 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Pflüger, Irada |b 0 |
| 245 | _ | _ | |a Automated detection and quantification of brain metastases on clinical MRI data using artificial neural networks |
| 260 | _ | _ | |a Oxford |c 2022 |b Oxford University Press |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1663334084_7133 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 500 | _ | _ | |a #EA:E230# |
| 520 | _ | _ | |a Background: Reliable detection and precise volumetric quantification of brain metastases (BM) on MRI are essential for guiding treatment decisions. Here we evaluate the potential of artificial neural networks (ANN) for automated detection and quantification of BM.Methods: A consecutive series of 308 patients with BM was used for developing an ANN (with a 4:1 split for training/testing) for automated volumetric assessment of contrast-enhancing tumors (CE) and non-enhancing FLAIR signal abnormality including edema (NEE). An independent consecutive series of 30 patients was used for external testing. Performance was assessed case-wise for CE and NEE and lesion-wise for CE using the case-wise/lesion-wise DICE-coefficient (C/L-DICE), positive predictive value (L-PPV) and sensitivity (C/L-Sensitivity).Results: The performance of detecting CE lesions on the validation dataset was not significantly affected when evaluating different volumetric thresholds (0.001-0.2 cm3; P = .2028). The median L-DICE and median C-DICE for CE lesions were 0.78 (IQR = 0.6-0.91) and 0.90 (IQR = 0.85-0.94) in the institutional as well as 0.79 (IQR = 0.67-0.82) and 0.84 (IQR = 0.76-0.89) in the external test dataset. The corresponding median L-Sensitivity and median L-PPV were 0.81 (IQR = 0.63-0.92) and 0.79 (IQR = 0.63-0.93) in the institutional test dataset, as compared to 0.85 (IQR = 0.76-0.94) and 0.76 (IQR = 0.68-0.88) in the external test dataset. The median C-DICE for NEE was 0.96 (IQR = 0.92-0.97) in the institutional test dataset as compared to 0.85 (IQR = 0.72-0.91) in the external test dataset.Conclusion: The developed ANN-based algorithm (publicly available at www.github.com/NeuroAI-HD/HD-BM) allows reliable detection and precise volumetric quantification of CE and NEE compartments in patients with BM. |
| 536 | _ | _ | |a 315 - Bildgebung und Radioonkologie (POF4-315) |0 G:(DE-HGF)POF4-315 |c POF4-315 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: inrepo02.dkfz.de |
| 700 | 1 | _ | |a Wald, Tassilo |0 P:(DE-He78)4412d586f86ca57943732a2b9318c44f |b 1 |e First author |u dkfz |
| 700 | 1 | _ | |a Isensee, Fabian |0 P:(DE-He78)7ea9af59d03ec7deb982a0e0562358fa |b 2 |u dkfz |
| 700 | 1 | _ | |a Schell, Marianne |b 3 |
| 700 | 1 | _ | |a Meredig, Hagen |b 4 |
| 700 | 1 | _ | |a Schlamp, Kai |b 5 |
| 700 | 1 | _ | |a Bernhardt, Denise |0 0000-0001-5231-9097 |b 6 |
| 700 | 1 | _ | |a Brugnara, Gianluca |b 7 |
| 700 | 1 | _ | |a Heußel, Claus Peter |b 8 |
| 700 | 1 | _ | |a Debus, Jürgen |0 P:(DE-He78)8714da4e45acfa36ce87c291443a9218 |b 9 |u dkfz |
| 700 | 1 | _ | |a Wick, Wolfgang |0 P:(DE-He78)92e9783ca7025f36ce14e12cd348d2ee |b 10 |u dkfz |
| 700 | 1 | _ | |a Bendszus, Martin |0 0000-0002-9094-6769 |b 11 |
| 700 | 1 | _ | |a Maier-Hein, Klaus |0 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3 |b 12 |u dkfz |
| 700 | 1 | _ | |a Vollmuth, Philipp |b 13 |
| 773 | _ | _ | |a 10.1093/noajnl/vdac138 |g Vol. 4, no. 1, p. vdac138 |0 PERI:(DE-600)3009682-0 |n 1 |p 1-11 |t Neuro-oncology advances |v 4 |y 2022 |x 2632-2498 |
| 909 | C | O | |o oai:inrepo02.dkfz.de:181706 |p VDB |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-He78)4412d586f86ca57943732a2b9318c44f |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 P:(DE-He78)7ea9af59d03ec7deb982a0e0562358fa |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 9 |6 P:(DE-He78)8714da4e45acfa36ce87c291443a9218 |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 10 |6 P:(DE-He78)92e9783ca7025f36ce14e12cd348d2ee |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 12 |6 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3 |
| 913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-315 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Bildgebung und Radioonkologie |x 0 |
| 914 | 1 | _ | |y 2022 |
| 915 | _ | _ | |a Creative Commons Attribution-NonCommercial CC BY-NC (No Version) |0 LIC:(DE-HGF)CCBYNCNV |2 V:(DE-HGF) |b DOAJ |d 2020-09-05 |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2020-09-05 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2020-09-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-09-23T13:25:59Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-09-23T13:25:59Z |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2022-09-23T13:25:59Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-12 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0112 |2 StatID |b Emerging Sources Citation Index |d 2022-11-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-12 |
| 920 | 0 | _ | |0 I:(DE-He78)E230-20160331 |k E230 |l E230 Medizinische Bildverarbeitung |x 0 |
| 920 | 1 | _ | |0 I:(DE-He78)E230-20160331 |k E230 |l E230 Medizinische Bildverarbeitung |x 0 |
| 920 | 1 | _ | |0 I:(DE-He78)HD01-20160331 |k HD01 |l DKTK HD zentral |x 1 |
| 920 | 1 | _ | |0 I:(DE-He78)E050-20160331 |k E050 |l E050 KKE Strahlentherapie |x 2 |
| 920 | 1 | _ | |0 I:(DE-He78)B320-20160331 |k B320 |l KKE Neuroonkologie |x 3 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-He78)E230-20160331 |
| 980 | _ | _ | |a I:(DE-He78)HD01-20160331 |
| 980 | _ | _ | |a I:(DE-He78)E050-20160331 |
| 980 | _ | _ | |a I:(DE-He78)B320-20160331 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|