000181787 001__ 181787
000181787 005__ 20240229145656.0
000181787 0247_ $$2doi$$a10.1128/jvi.00706-22
000181787 0247_ $$2pmid$$apmid:36000839
000181787 0247_ $$2pmc$$apmc:PMC9472630
000181787 0247_ $$2ISSN$$a0022-538X
000181787 0247_ $$2ISSN$$a1070-6321
000181787 0247_ $$2ISSN$$a1098-5514
000181787 0247_ $$2altmetric$$aaltmetric:134934453
000181787 037__ $$aDKFZ-2022-02210
000181787 041__ $$aEnglish
000181787 082__ $$a610
000181787 1001_ $$0P:(DE-He78)51c7e0db09353baf8fff5d9a63da0abb$$aDoldan, Patricio$$b0$$eFirst author
000181787 245__ $$aType III and Not Type I Interferons Efficiently Prevent the Spread of Rotavirus in Human Intestinal Epithelial Cells.
000181787 260__ $$aBaltimore, Md.$$bSoc.$$c2022
000181787 3367_ $$2DRIVER$$aarticle
000181787 3367_ $$2DataCite$$aOutput Types/Journal article
000181787 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1663835647_25469
000181787 3367_ $$2BibTeX$$aARTICLE
000181787 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000181787 3367_ $$00$$2EndNote$$aJournal Article
000181787 500__ $$a#EA:F140#LA:F140#
000181787 520__ $$aRotavirus infects intestinal epithelial cells and is the leading cause of gastroenteritis in infants worldwide. Upon viral infection, intestinal cells produce type I and type III interferons (IFNs) to alert the tissue and promote an antiviral state. These two types of IFN bind to different receptors but induce similar pathways that stimulate the activation of interferon-stimulated genes (ISGs) to combat viral infection. In this work, we studied the spread of a fluorescent wild-type (WT) SA11 rotavirus in human colorectal cancer cells lacking specific interferon receptors and compared it to that of an NSP1 mutant rotavirus that cannot interfere with the host intrinsic innate immune response. We could show that the WT rotavirus efficiently blocks the production of type I IFNs but that type III IFNs are still produced, whereas the NSP1 mutant rotavirus allows the production of both. Interestingly, while both exogenously added type I and type III IFNs could efficiently protect cells against rotavirus infection, endogenous type III IFNs were found to be key to limit infection of human intestinal cells by rotavirus. By using a fluorescent reporter cell line to highlight the cells mounting an antiviral program, we could show that paracrine signaling driven by type III IFNs efficiently controls the spread of both WT and NSP1 mutant rotavirus. Our results strongly suggest that NSP1 efficiently blocks the type I IFN-mediated antiviral response; however, its restriction of the type III IFN-mediated one is not sufficient to prevent type III IFNs from partially inhibiting viral spread in intestinal epithelial cells. Additionally, our findings further highlight the importance of type III IFNs in controlling rotavirus infection, which could be exploited as antiviral therapeutic measures. IMPORTANCE Rotavirus is one of the most common causes of gastroenteritis worldwide. In developing countries, rotavirus infections lead to more than 200,000 deaths in infants and children. The intestinal epithelial cells lining the gastrointestinal tract combat rotavirus infection by two key antiviral compounds known as type I and III interferons. However, rotavirus has developed countermeasures to block the antiviral actions of the interferons. In this work, we evaluated the arms race between rotavirus and type I and III interferons. We determined that although rotavirus could block the induction of type I interferons, it was unable to block type III interferons. The ability of infected cells to produce and release type III interferons leads to the protection of the noninfected neighboring cells and the clearance of rotavirus infection from the epithelium. This suggests that type III interferons are key antiviral agents and could be used to help control rotavirus infections in children.
000181787 536__ $$0G:(DE-HGF)POF4-316$$a316 - Infektionen, Entzündung und Krebs (POF4-316)$$cPOF4-316$$fPOF IV$$x0
000181787 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000181787 650_7 $$2Other$$aautocrine signaling
000181787 650_7 $$2Other$$ahuman intestinal epithelial cells
000181787 650_7 $$2Other$$ainterferons
000181787 650_7 $$2Other$$alambda interferon (IFN)
000181787 650_7 $$2Other$$aparacrine signaling
000181787 650_7 $$2Other$$arotavirus
000181787 650_7 $$2Other$$arotavirus NSP1
000181787 650_7 $$2Other$$atype III interferon (IFN)
000181787 650_7 $$2NLM Chemicals$$aAntiviral Agents
000181787 650_7 $$2NLM Chemicals$$aInterferon Type I
000181787 650_7 $$09008-11-1$$2NLM Chemicals$$aInterferons
000181787 650_2 $$2MeSH$$aAntiviral Agents: pharmacology
000181787 650_2 $$2MeSH$$aChild
000181787 650_2 $$2MeSH$$aEpithelial Cells
000181787 650_2 $$2MeSH$$aGastroenteritis: metabolism
000181787 650_2 $$2MeSH$$aHumans
000181787 650_2 $$2MeSH$$aInterferon Type I: metabolism
000181787 650_2 $$2MeSH$$aInterferons: metabolism
000181787 650_2 $$2MeSH$$aRotavirus: metabolism
000181787 650_2 $$2MeSH$$aRotavirus Infections: metabolism
000181787 7001_ $$aDai, Jin$$b1
000181787 7001_ $$aMetz-Zumaran, Camila$$b2
000181787 7001_ $$00000-0003-1572-0732$$aPatton, John T$$b3
000181787 7001_ $$aStanifer, Megan L$$b4
000181787 7001_ $$0P:(DE-He78)4658b59d5b4e54b919fc63ab1213c78f$$aBoulant, Steeve$$b5$$eLast author
000181787 773__ $$0PERI:(DE-600)1495529-5$$a10.1128/jvi.00706-22$$gVol. 96, no. 17, p. e00706-22$$n17$$pe00706-22$$tJournal of virology$$v96$$x0022-538X$$y2022
000181787 909CO $$ooai:inrepo02.dkfz.de:181787$$pVDB
000181787 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)51c7e0db09353baf8fff5d9a63da0abb$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000181787 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4658b59d5b4e54b919fc63ab1213c78f$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000181787 9131_ $$0G:(DE-HGF)POF4-316$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vInfektionen, Entzündung und Krebs$$x0
000181787 9141_ $$y2022
000181787 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000181787 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-28
000181787 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000181787 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ VIROL : 2021$$d2022-11-17
000181787 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17
000181787 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-17
000181787 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-17
000181787 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-17
000181787 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-17
000181787 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-17
000181787 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-17
000181787 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-17
000181787 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ VIROL : 2021$$d2022-11-17
000181787 9202_ $$0I:(DE-He78)F140-20160331$$kF140$$lNWG Infection and Immune Sensing Dynamics$$x0
000181787 9201_ $$0I:(DE-He78)F140-20160331$$kF140$$lNWG Infection and Immune Sensing Dynamics$$x0
000181787 9200_ $$0I:(DE-He78)F140-20160331$$kF140$$lNWG Infection and Immune Sensing Dynamics$$x0
000181787 980__ $$ajournal
000181787 980__ $$aVDB
000181787 980__ $$aI:(DE-He78)F140-20160331
000181787 980__ $$aUNRESTRICTED