001     181787
005     20240229145656.0
024 7 _ |a 10.1128/jvi.00706-22
|2 doi
024 7 _ |a pmid:36000839
|2 pmid
024 7 _ |a pmc:PMC9472630
|2 pmc
024 7 _ |a 0022-538X
|2 ISSN
024 7 _ |a 1070-6321
|2 ISSN
024 7 _ |a 1098-5514
|2 ISSN
024 7 _ |a altmetric:134934453
|2 altmetric
037 _ _ |a DKFZ-2022-02210
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Doldan, Patricio
|0 P:(DE-He78)51c7e0db09353baf8fff5d9a63da0abb
|b 0
|e First author
245 _ _ |a Type III and Not Type I Interferons Efficiently Prevent the Spread of Rotavirus in Human Intestinal Epithelial Cells.
260 _ _ |a Baltimore, Md.
|c 2022
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1663835647_25469
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:F140#LA:F140#
520 _ _ |a Rotavirus infects intestinal epithelial cells and is the leading cause of gastroenteritis in infants worldwide. Upon viral infection, intestinal cells produce type I and type III interferons (IFNs) to alert the tissue and promote an antiviral state. These two types of IFN bind to different receptors but induce similar pathways that stimulate the activation of interferon-stimulated genes (ISGs) to combat viral infection. In this work, we studied the spread of a fluorescent wild-type (WT) SA11 rotavirus in human colorectal cancer cells lacking specific interferon receptors and compared it to that of an NSP1 mutant rotavirus that cannot interfere with the host intrinsic innate immune response. We could show that the WT rotavirus efficiently blocks the production of type I IFNs but that type III IFNs are still produced, whereas the NSP1 mutant rotavirus allows the production of both. Interestingly, while both exogenously added type I and type III IFNs could efficiently protect cells against rotavirus infection, endogenous type III IFNs were found to be key to limit infection of human intestinal cells by rotavirus. By using a fluorescent reporter cell line to highlight the cells mounting an antiviral program, we could show that paracrine signaling driven by type III IFNs efficiently controls the spread of both WT and NSP1 mutant rotavirus. Our results strongly suggest that NSP1 efficiently blocks the type I IFN-mediated antiviral response; however, its restriction of the type III IFN-mediated one is not sufficient to prevent type III IFNs from partially inhibiting viral spread in intestinal epithelial cells. Additionally, our findings further highlight the importance of type III IFNs in controlling rotavirus infection, which could be exploited as antiviral therapeutic measures. IMPORTANCE Rotavirus is one of the most common causes of gastroenteritis worldwide. In developing countries, rotavirus infections lead to more than 200,000 deaths in infants and children. The intestinal epithelial cells lining the gastrointestinal tract combat rotavirus infection by two key antiviral compounds known as type I and III interferons. However, rotavirus has developed countermeasures to block the antiviral actions of the interferons. In this work, we evaluated the arms race between rotavirus and type I and III interferons. We determined that although rotavirus could block the induction of type I interferons, it was unable to block type III interferons. The ability of infected cells to produce and release type III interferons leads to the protection of the noninfected neighboring cells and the clearance of rotavirus infection from the epithelium. This suggests that type III interferons are key antiviral agents and could be used to help control rotavirus infections in children.
536 _ _ |a 316 - Infektionen, Entzündung und Krebs (POF4-316)
|0 G:(DE-HGF)POF4-316
|c POF4-316
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a autocrine signaling
|2 Other
650 _ 7 |a human intestinal epithelial cells
|2 Other
650 _ 7 |a interferons
|2 Other
650 _ 7 |a lambda interferon (IFN)
|2 Other
650 _ 7 |a paracrine signaling
|2 Other
650 _ 7 |a rotavirus
|2 Other
650 _ 7 |a rotavirus NSP1
|2 Other
650 _ 7 |a type III interferon (IFN)
|2 Other
650 _ 7 |a Antiviral Agents
|2 NLM Chemicals
650 _ 7 |a Interferon Type I
|2 NLM Chemicals
650 _ 7 |a Interferons
|0 9008-11-1
|2 NLM Chemicals
650 _ 2 |a Antiviral Agents: pharmacology
|2 MeSH
650 _ 2 |a Child
|2 MeSH
650 _ 2 |a Epithelial Cells
|2 MeSH
650 _ 2 |a Gastroenteritis: metabolism
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Interferon Type I: metabolism
|2 MeSH
650 _ 2 |a Interferons: metabolism
|2 MeSH
650 _ 2 |a Rotavirus: metabolism
|2 MeSH
650 _ 2 |a Rotavirus Infections: metabolism
|2 MeSH
700 1 _ |a Dai, Jin
|b 1
700 1 _ |a Metz-Zumaran, Camila
|b 2
700 1 _ |a Patton, John T
|0 0000-0003-1572-0732
|b 3
700 1 _ |a Stanifer, Megan L
|b 4
700 1 _ |a Boulant, Steeve
|0 P:(DE-He78)4658b59d5b4e54b919fc63ab1213c78f
|b 5
|e Last author
773 _ _ |a 10.1128/jvi.00706-22
|g Vol. 96, no. 17, p. e00706-22
|0 PERI:(DE-600)1495529-5
|n 17
|p e00706-22
|t Journal of virology
|v 96
|y 2022
|x 0022-538X
909 C O |o oai:inrepo02.dkfz.de:181787
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)51c7e0db09353baf8fff5d9a63da0abb
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)4658b59d5b4e54b919fc63ab1213c78f
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-316
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Infektionen, Entzündung und Krebs
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J VIROL : 2021
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-17
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-17
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J VIROL : 2021
|d 2022-11-17
920 2 _ |0 I:(DE-He78)F140-20160331
|k F140
|l NWG Infection and Immune Sensing Dynamics
|x 0
920 1 _ |0 I:(DE-He78)F140-20160331
|k F140
|l NWG Infection and Immune Sensing Dynamics
|x 0
920 0 _ |0 I:(DE-He78)F140-20160331
|k F140
|l NWG Infection and Immune Sensing Dynamics
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)F140-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21