000181790 001__ 181790
000181790 005__ 20240229145657.0
000181790 0247_ $$2doi$$a10.1016/j.media.2022.102622
000181790 0247_ $$2ISSN$$a1361-8415
000181790 0247_ $$2ISSN$$a1361-8423
000181790 0247_ $$2ISSN$$a1361-8431
000181790 0247_ $$2altmetric$$aaltmetric:136257149
000181790 0247_ $$2pmid$$apmid:36130464
000181790 037__ $$aDKFZ-2022-02213
000181790 082__ $$a610
000181790 1001_ $$aGhaffari Laleh, Narmin$$b0
000181790 245__ $$aErratum to ‘Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology’ Medical Image Analysis, Volume 79, July 2022, 102474
000181790 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2022
000181790 3367_ $$2DRIVER$$aarticle
000181790 3367_ $$2DataCite$$aOutput Types/Journal article
000181790 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1663848764_4970$$xErratum/Correction
000181790 3367_ $$2BibTeX$$aARTICLE
000181790 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000181790 3367_ $$00$$2EndNote$$aJournal Article
000181790 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000181790 588__ $$aDataset connected to CrossRef, Journals: inrepo02.dkfz.de
000181790 7001_ $$aMuti, Hannah Sophie$$b1
000181790 7001_ $$aLoeffler, Chiara Maria Lavinia$$b2
000181790 7001_ $$aEchle, Amelie$$b3
000181790 7001_ $$aSaldanha, Oliver Lester$$b4
000181790 7001_ $$aMahmood, Faisal$$b5
000181790 7001_ $$aLu, Ming Y.$$b6
000181790 7001_ $$aTrautwein, Christian$$b7
000181790 7001_ $$aLanger, Rupert$$b8
000181790 7001_ $$aDislich, Bastian$$b9
000181790 7001_ $$aBuelow, Roman D.$$b10
000181790 7001_ $$aGrabsch, Heike Irmgard$$b11
000181790 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b12$$udkfz
000181790 7001_ $$0P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253$$aChang-Claude, Jenny$$b13$$udkfz
000181790 7001_ $$0P:(DE-He78)9b2a61b2abe4a64ca23b6783b7c4fe63$$aAlwers, Elizabeth$$b14$$udkfz
000181790 7001_ $$0P:(DE-He78)1e33961c8780aca9b76d776d1fdc1ebb$$aBrinker, Titus$$b15$$udkfz
000181790 7001_ $$aKhader, Firas$$b16
000181790 7001_ $$aTruhn, Daniel$$b17
000181790 7001_ $$aGaisa, Nadine T.$$b18
000181790 7001_ $$aBoor, Peter$$b19
000181790 7001_ $$0P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f$$aHoffmeister, Michael$$b20$$udkfz
000181790 7001_ $$aSchulz, Volkmar$$b21
000181790 7001_ $$aKather, Jakob Nikolas$$b22
000181790 773__ $$0PERI:(DE-600)1497450-2$$a10.1016/j.media.2022.102622$$gVol. 82, p. 102622 -$$p102622$$tMedical image analysis$$v82$$x1361-8415$$y2022
000181790 909CO $$ooai:inrepo02.dkfz.de:181790$$pVDB
000181790 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ
000181790 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253$$aDeutsches Krebsforschungszentrum$$b13$$kDKFZ
000181790 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)9b2a61b2abe4a64ca23b6783b7c4fe63$$aDeutsches Krebsforschungszentrum$$b14$$kDKFZ
000181790 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)1e33961c8780aca9b76d776d1fdc1ebb$$aDeutsches Krebsforschungszentrum$$b15$$kDKFZ
000181790 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f$$aDeutsches Krebsforschungszentrum$$b20$$kDKFZ
000181790 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000181790 9141_ $$y2022
000181790 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000181790 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000181790 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMED IMAGE ANAL : 2021$$d2022-11-18
000181790 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-18
000181790 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-18
000181790 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-18
000181790 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-18
000181790 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-18
000181790 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-18
000181790 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-18
000181790 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bMED IMAGE ANAL : 2021$$d2022-11-18
000181790 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000181790 9201_ $$0I:(DE-He78)C120-20160331$$kC120$$lPräventive Onkologie$$x1
000181790 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x2
000181790 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x3
000181790 9201_ $$0I:(DE-He78)C140-20160331$$kC140$$lNWG Digitale Biomarker in der Onkologie$$x4
000181790 980__ $$ajournal
000181790 980__ $$aVDB
000181790 980__ $$aI:(DE-He78)C070-20160331
000181790 980__ $$aI:(DE-He78)C120-20160331
000181790 980__ $$aI:(DE-He78)HD01-20160331
000181790 980__ $$aI:(DE-He78)C020-20160331
000181790 980__ $$aI:(DE-He78)C140-20160331
000181790 980__ $$aUNRESTRICTED