000181790 001__ 181790 000181790 005__ 20240229145657.0 000181790 0247_ $$2doi$$a10.1016/j.media.2022.102622 000181790 0247_ $$2ISSN$$a1361-8415 000181790 0247_ $$2ISSN$$a1361-8423 000181790 0247_ $$2ISSN$$a1361-8431 000181790 0247_ $$2altmetric$$aaltmetric:136257149 000181790 0247_ $$2pmid$$apmid:36130464 000181790 037__ $$aDKFZ-2022-02213 000181790 082__ $$a610 000181790 1001_ $$aGhaffari Laleh, Narmin$$b0 000181790 245__ $$aErratum to ‘Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology’ Medical Image Analysis, Volume 79, July 2022, 102474 000181790 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2022 000181790 3367_ $$2DRIVER$$aarticle 000181790 3367_ $$2DataCite$$aOutput Types/Journal article 000181790 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1663848764_4970$$xErratum/Correction 000181790 3367_ $$2BibTeX$$aARTICLE 000181790 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000181790 3367_ $$00$$2EndNote$$aJournal Article 000181790 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0 000181790 588__ $$aDataset connected to CrossRef, Journals: inrepo02.dkfz.de 000181790 7001_ $$aMuti, Hannah Sophie$$b1 000181790 7001_ $$aLoeffler, Chiara Maria Lavinia$$b2 000181790 7001_ $$aEchle, Amelie$$b3 000181790 7001_ $$aSaldanha, Oliver Lester$$b4 000181790 7001_ $$aMahmood, Faisal$$b5 000181790 7001_ $$aLu, Ming Y.$$b6 000181790 7001_ $$aTrautwein, Christian$$b7 000181790 7001_ $$aLanger, Rupert$$b8 000181790 7001_ $$aDislich, Bastian$$b9 000181790 7001_ $$aBuelow, Roman D.$$b10 000181790 7001_ $$aGrabsch, Heike Irmgard$$b11 000181790 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b12$$udkfz 000181790 7001_ $$0P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253$$aChang-Claude, Jenny$$b13$$udkfz 000181790 7001_ $$0P:(DE-He78)9b2a61b2abe4a64ca23b6783b7c4fe63$$aAlwers, Elizabeth$$b14$$udkfz 000181790 7001_ $$0P:(DE-He78)1e33961c8780aca9b76d776d1fdc1ebb$$aBrinker, Titus$$b15$$udkfz 000181790 7001_ $$aKhader, Firas$$b16 000181790 7001_ $$aTruhn, Daniel$$b17 000181790 7001_ $$aGaisa, Nadine T.$$b18 000181790 7001_ $$aBoor, Peter$$b19 000181790 7001_ $$0P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f$$aHoffmeister, Michael$$b20$$udkfz 000181790 7001_ $$aSchulz, Volkmar$$b21 000181790 7001_ $$aKather, Jakob Nikolas$$b22 000181790 773__ $$0PERI:(DE-600)1497450-2$$a10.1016/j.media.2022.102622$$gVol. 82, p. 102622 -$$p102622$$tMedical image analysis$$v82$$x1361-8415$$y2022 000181790 909CO $$ooai:inrepo02.dkfz.de:181790$$pVDB 000181790 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ 000181790 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253$$aDeutsches Krebsforschungszentrum$$b13$$kDKFZ 000181790 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)9b2a61b2abe4a64ca23b6783b7c4fe63$$aDeutsches Krebsforschungszentrum$$b14$$kDKFZ 000181790 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)1e33961c8780aca9b76d776d1fdc1ebb$$aDeutsches Krebsforschungszentrum$$b15$$kDKFZ 000181790 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f$$aDeutsches Krebsforschungszentrum$$b20$$kDKFZ 000181790 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0 000181790 9141_ $$y2022 000181790 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28 000181790 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28 000181790 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMED IMAGE ANAL : 2021$$d2022-11-18 000181790 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-18 000181790 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-18 000181790 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-18 000181790 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-18 000181790 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-18 000181790 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-18 000181790 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-18 000181790 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bMED IMAGE ANAL : 2021$$d2022-11-18 000181790 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0 000181790 9201_ $$0I:(DE-He78)C120-20160331$$kC120$$lPräventive Onkologie$$x1 000181790 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x2 000181790 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x3 000181790 9201_ $$0I:(DE-He78)C140-20160331$$kC140$$lNWG Digitale Biomarker in der Onkologie$$x4 000181790 980__ $$ajournal 000181790 980__ $$aVDB 000181790 980__ $$aI:(DE-He78)C070-20160331 000181790 980__ $$aI:(DE-He78)C120-20160331 000181790 980__ $$aI:(DE-He78)HD01-20160331 000181790 980__ $$aI:(DE-He78)C020-20160331 000181790 980__ $$aI:(DE-He78)C140-20160331 000181790 980__ $$aUNRESTRICTED