001     181845
005     20240229145659.0
024 7 _ |a 10.1186/s40644-022-00489-9
|2 doi
024 7 _ |a pmid:36138437
|2 pmid
024 7 _ |a 1470-7330
|2 ISSN
024 7 _ |a 1740-5025
|2 ISSN
024 7 _ |a altmetric:136303603
|2 altmetric
037 _ _ |a DKFZ-2022-02260
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Glemser, Philip Alexander
|0 P:(DE-He78)ec15551e1bf57c41065d3502b66b1fe7
|b 0
|e First author
|u dkfz
245 _ _ |a Hybrid imaging with [68Ga]PSMA-11 PET-CT and PET-MRI in biochemically recurrent prostate cancer.
260 _ _ |a London
|c 2022
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1664201555_27603
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E010#LA:E060#
520 _ _ |a To compare [68Ga]PSMA-11 PET-CT, [68Ga]PSMA-11 PET-MRI and MRI in a cohort of prostate cancer (PCa) patients in biochemical recurrence after initial curative therapy.Fifty-three patients with biochemically recurrent PCa underwent whole-body [68Ga]PSMA-11 PET-CT 1 hour post-injection (p.i.) followed by [68Ga]PSMA-11 PET-MRI 2.5 hours p.i., including a multiparametric MRI pelvic protocol examination. Imaging data analysis consisted of visual (qualitative) evaluation of the PET-CT, PET-MRI and MRI scans, as well as semi-quantitative and quantitative analyses of the PET and MRI data, including calculation of the parameters standardized uptake value (SUV) and apparent diffusion coefficient (ADC) derived from the PCa lesions. Association analysis was performed between imaging and clinical data, including PSA level and Gleason score. The results were considered significant for p-values less than 0.05 (p < 0.05).The hybrid imaging modalities [68Ga]PSMA-11 PET-CT and PET-MRI were positive in more patients than MRI alone. In particular, PET-CT detected lesions suggestive of PCa relapse in 34/53 (64.2%), PET-MRI in 36/53 (67.9%) and MRI in 23/53 patients (43.4%). While no significant differences in lesion detection rate were observed between PET-CT and PET-MRI, the latter was particularly efficient in detection of local recurrences in the prostate bed mainly due to the contribution of the MRI part of the modality. Association analysis revealed a statistically significant increase in the probability of a positive scan with increasing PSA levels for all imaging modalities. Accordingly, there was no significant association between scan positivity rate and Gleason score for any imaging modality. No significant correlation was observed between SUV and ADC values in lymph node metastases.[68Ga]PSMA-11 PET-CT and PET-MRI provide equally good detection rates for PCa recurrence, both outperforming stand-alone MRI.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a ADC
|2 Other
650 _ 7 |a PET-CT
|2 Other
650 _ 7 |a PET-MRI
|2 Other
650 _ 7 |a Prostate cancer recurrence
|2 Other
650 _ 7 |a SUV
|2 Other
650 _ 7 |a [68Ga]PSMA-11 ligand
|2 Other
700 1 _ |a Rotkopf, Lukas Thomas
|0 P:(DE-He78)d7135c1486ffd923f71735d40a3d7a0c
|b 1
|u dkfz
700 1 _ |a Ziener, Christian
|0 P:(DE-He78)a56941777fbaf0ca1008366e7e16667f
|b 2
|u dkfz
700 1 _ |a Beuthien-Baumann, Bettina
|0 P:(DE-He78)c5312d96130619e491466891238cc117
|b 3
|u dkfz
700 1 _ |a Weru, Vivienn
|0 P:(DE-He78)7dc85735e114a4ace658ba1450a2cca6
|b 4
|u dkfz
700 1 _ |a Kopp-Schneider, Annette
|0 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
|b 5
|u dkfz
700 1 _ |a Schlemmer, Heinz-Peter
|0 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
|b 6
|u dkfz
700 1 _ |a Dimitrakopoulou-Strauss, Antonia
|0 P:(DE-He78)b2df3652dfa3e19d5e96dfc53f44a992
|b 7
|u dkfz
700 1 _ |a Sachpekidis, Christos
|0 P:(DE-He78)69d2d5247c019c2a2075502dc11bf0b2
|b 8
|e Last author
|u dkfz
773 _ _ |a 10.1186/s40644-022-00489-9
|g Vol. 22, no. 1, p. 53
|0 PERI:(DE-600)2104862-9
|n 1
|p 53
|t Cancer imaging
|v 22
|y 2022
|x 1470-7330
909 C O |o oai:inrepo02.dkfz.de:181845
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)ec15551e1bf57c41065d3502b66b1fe7
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)d7135c1486ffd923f71735d40a3d7a0c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)a56941777fbaf0ca1008366e7e16667f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)c5312d96130619e491466891238cc117
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)7dc85735e114a4ace658ba1450a2cca6
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)b2df3652dfa3e19d5e96dfc53f44a992
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)69d2d5247c019c2a2075502dc11bf0b2
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-29
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-08-15T08:21:23Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-08-15T08:21:23Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2022-08-15T08:21:23Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-16
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CANCER IMAGING : 2021
|d 2022-11-16
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CANCER IMAGING : 2021
|d 2022-11-16
920 2 _ |0 I:(DE-He78)E060-20160331
|k E060
|l E060 KKE Nuklearmedizin
|x 0
920 1 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 1
920 1 _ |0 I:(DE-He78)E060-20160331
|k E060
|l E060 KKE Nuklearmedizin
|x 2
920 0 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E010-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)E060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21