000181848 001__ 181848
000181848 005__ 20240229145659.0
000181848 0247_ $$2doi$$a10.3389/fimmu.2022.947407
000181848 0247_ $$2pmid$$apmid:36131941
000181848 0247_ $$2pmc$$apmc:PMC9483939
000181848 0247_ $$2altmetric$$aaltmetric:135623683
000181848 037__ $$aDKFZ-2022-02263
000181848 041__ $$aEnglish
000181848 082__ $$a610
000181848 1001_ $$0P:(DE-He78)bac8c2c56238485ecf0475ff14438430$$aAhmed, Azaz$$b0$$eFirst author$$udkfz
000181848 245__ $$aImmune features of the peritumoral stroma in pancreatic ductal adenocarcinoma.
000181848 260__ $$aLausanne$$bFrontiers Media$$c2022
000181848 3367_ $$2DRIVER$$aarticle
000181848 3367_ $$2DataCite$$aOutput Types/Journal article
000181848 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1698998378_23207
000181848 3367_ $$2BibTeX$$aARTICLE
000181848 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000181848 3367_ $$00$$2EndNote$$aJournal Article
000181848 500__ $$a#EA:D240#LA:D240# / HI-TRON
000181848 520__ $$aThe peritumoral stroma is a hallmark of pancreatic ductal adenocarcinoma (PDA) with implications for disease development, progression and therapy resistance. We systematically investigated immune features of the stroma in PDA patients to identify markers of clinical importance and potential therapeutic targets.Tissue and blood samples of 51 PDA patients with clinical and follow-up information were included. Laser Capture Microdissection allowed us to analyze the stromal compartment in particular. Systematic immunohistochemistry, followed by software-based image analysis were conducted. Also, multiplex cytokine analyses (including 50 immune-related molecules) were performed. Functional analyses were performed using patient-derived 3D bioprints. Clinical information was used for survival analyses. Intercompartmental IL9 and IL18 gradients were assessed in matched samples of tumor epithelium, stroma, and serum of patients. Serum levels were compared to an age-matched healthy control group.Stromal IL9 and IL18 are significantly associated with patient survival. While IL9 is a prognostic favorable marker (p=0.041), IL18 associates with poor patient outcomes (p=0.030). IL9 correlates with an anti-tumoral cytokine network which connects regulation of T helper (Th) 9, Th1 and Th17 cells (all: p<0.05 and r>0.5). IL18 correlates with a Th1-type cytokine phenotype and stromal CXCL12 expression (all: p<0.05 and r>0.5). Further, IL18 associates with a higher level of exhausted T cells. Inhibition of IL18 results in diminished Th1- and Th2-type cytokines. Patients with high stromal IL9 expression have a tumor-to-stroma IL9 gradient directed towards the stroma (p=0.019). Low IL18 expression associates with a tumor-to-stroma IL18 gradient away from the stroma (p=0.007). PDA patients showed higher serum levels of IL9 than healthy controls while serum IL18 levels were significantly lower than in healthy individuals. The stromal immune cell composition is distinct from the tumor epithelium. Stromal density of FoxP3+ regulatory T cells showed a tendency towards improved patient survival (p=0.071).An unexpected high expression of the cytokines IL9 and IL18 at different ends is of significance in the stroma of PDA and relates to opposing patient outcomes. Sub-compartmental cytokine analyses highlight the importance of a differentiated gradient assessment. The findings suggest stromal IL9 and/or IL18 as markers for patient stratification and as potential therapeutic targets. Future steps include investigating e. g. the role of local microbiota as both cytokines are also regulated by microbial compositions.
000181848 536__ $$0G:(DE-HGF)POF4-314$$a314 - Immunologie und Krebs (POF4-314)$$cPOF4-314$$fPOF IV$$x0
000181848 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000181848 650_7 $$2Other$$aIL18
000181848 650_7 $$2Other$$aIL9
000181848 650_7 $$2Other$$apancreatic cancer
000181848 650_7 $$2Other$$astroma
000181848 650_7 $$2Other$$astromal immunology
000181848 650_7 $$2NLM Chemicals$$aCytokines
000181848 650_7 $$2NLM Chemicals$$aForkhead Transcription Factors
000181848 650_7 $$2NLM Chemicals$$aInterleukin-18
000181848 650_7 $$2NLM Chemicals$$aInterleukin-9
000181848 650_2 $$2MeSH$$aCarcinoma, Pancreatic Ductal: pathology
000181848 650_2 $$2MeSH$$aCytokines
000181848 650_2 $$2MeSH$$aForkhead Transcription Factors
000181848 650_2 $$2MeSH$$aHumans
000181848 650_2 $$2MeSH$$aInterleukin-18
000181848 650_2 $$2MeSH$$aInterleukin-9
000181848 650_2 $$2MeSH$$aPancreatic Neoplasms: pathology
000181848 7001_ $$aKlotz, Rosa$$b1
000181848 7001_ $$aKöhler, Sophia$$b2
000181848 7001_ $$aGiese, Nathalia$$b3
000181848 7001_ $$aHackert, Thilo$$b4
000181848 7001_ $$aSpringfeld, Christoph$$b5
000181848 7001_ $$0P:(DE-He78)ed0321409c9cde20b380ae663dbcefd1$$aJäger, Dirk$$b6$$udkfz
000181848 7001_ $$0P:(DE-He78)0a4053be7ffd6aa9bef69de28753a601$$aHalama, Niels$$b7$$eLast author$$udkfz
000181848 773__ $$0PERI:(DE-600)2606827-8$$a10.3389/fimmu.2022.947407$$gVol. 13, p. 947407$$p947407$$tFrontiers in immunology$$v13$$x1664-3224$$y2022
000181848 909CO $$ooai:inrepo02.dkfz.de:181848$$pVDB
000181848 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)bac8c2c56238485ecf0475ff14438430$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000181848 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)ed0321409c9cde20b380ae663dbcefd1$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000181848 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0a4053be7ffd6aa9bef69de28753a601$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000181848 9131_ $$0G:(DE-HGF)POF4-314$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImmunologie und Krebs$$x0
000181848 9141_ $$y2022
000181848 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-01-29
000181848 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000181848 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000181848 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-29
000181848 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-29
000181848 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT IMMUNOL : 2021$$d2022-11-23
000181848 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-23
000181848 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-23
000181848 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-11T10:28:02Z
000181848 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-11T10:28:02Z
000181848 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-11T10:28:02Z
000181848 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-23
000181848 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-23
000181848 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bFRONT IMMUNOL : 2021$$d2022-11-23
000181848 9202_ $$0I:(DE-He78)D240-20160331$$kD240$$lTranslationale Immuntherapie$$x0
000181848 9201_ $$0I:(DE-He78)D240-20160331$$kD240$$lTranslationale Immuntherapie$$x0
000181848 9201_ $$0I:(DE-He78)D120-20160331$$kD120$$lD120 Angewandte Tumor-Immunität$$x1
000181848 9200_ $$0I:(DE-He78)D240-20160331$$kD240$$lTranslationale Immuntherapie$$x0
000181848 980__ $$ajournal
000181848 980__ $$aVDB
000181848 980__ $$aI:(DE-He78)D240-20160331
000181848 980__ $$aI:(DE-He78)D120-20160331
000181848 980__ $$aUNRESTRICTED