001     181851
005     20240229145659.0
024 7 _ |a 10.1016/j.ebiom.2022.104269
|2 doi
024 7 _ |a pmid:36130474
|2 pmid
024 7 _ |a pmc:PMC9486558
|2 pmc
024 7 _ |a altmetric:136083251
|2 altmetric
037 _ _ |a DKFZ-2022-02266
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Webb, Adam J
|b 0
245 _ _ |a Treatment time and circadian genotype interact to influence radiotherapy side-effects. A prospective European validation study using the REQUITE cohort.
260 _ _ |a Amsterdam [u.a.]
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1664201934_27600
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Circadian rhythm impacts broad biological processes, including response to cancer treatment. Evidence conflicts on whether treatment time affects risk of radiotherapy side-effects, likely because of differing time analyses and target tissues. We previously showed interactive effects of time and genotypes of circadian genes on late toxicity after breast radiotherapy and aimed to validate those results in a multi-centre cohort.Clinical and genotype data from 1690 REQUITE breast cancer patients were used with erythema (acute; n=340) and breast atrophy (two years post-radiotherapy; n=514) as primary endpoints. Local datetimes per fraction were converted into solar times as predictors. Genetic chronotype markers were included in logistic regressions to identify primary endpoint predictors.Significant predictors for erythema included BMI, radiation dose and PER3 genotype (OR 1.27(95%CI 1.03-1.56); P < 0.03). Effect of treatment time effect on acute toxicity was inconclusive, with no interaction between time and genotype. For late toxicity (breast atrophy), predictors included BMI, radiation dose, surgery type, treatment time and SNPs in CLOCK (OR 0.62 (95%CI 0.4-0.9); P < 0.01), PER3 (OR 0.65 (95%CI 0.44-0.97); P < 0.04) and RASD1 (OR 0.56 (95%CI 0.35-0.89); P < 0.02). There was a statistically significant interaction between time and genotypes of circadian rhythm genes (CLOCK OR 1.13 (95%CI 1.03-1.23), P < 0.01; PER3 OR 1.1 (95%CI 1.01-1.2), P < 0.04; RASD1 OR 1.15 (95%CI 1.04-1.28), P < 0.008), with peak time for toxicity determined by genotype.Late atrophy can be mitigated by selecting optimal treatment time according to circadian genotypes (e.g. treat PER3 rs2087947C/C genotypes in mornings; T/T in afternoons). We predict triple-homozygous patients (14%) reduce chance of atrophy from 70% to 33% by treating in mornings as opposed to mid-afternoon. Future clinical trials could stratify patients treated at optimal times compared to those scheduled normally.EU-FP7.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Breast cancer
|2 Other
650 _ 7 |a Circadian rhythm
|2 Other
650 _ 7 |a Genetics
|2 Other
650 _ 7 |a Radiotherapy
|2 Other
700 1 _ |a Harper, Emily
|b 1
700 1 _ |a Rattay, Tim
|b 2
700 1 _ |a Aguado-Barrera, Miguel E
|b 3
700 1 _ |a Azria, David
|b 4
700 1 _ |a Bourgier, Celine
|b 5
700 1 _ |a Brengues, Muriel
|b 6
700 1 _ |a Briers, Erik
|b 7
700 1 _ |a Bultijnck, Renée
|b 8
700 1 _ |a Chang-Claude, Jenny
|0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
|b 9
|u dkfz
700 1 _ |a Choudhury, Ananya
|b 10
700 1 _ |a Cicchetti, Alessandro
|b 11
700 1 _ |a De Ruysscher, Dirk
|b 12
700 1 _ |a De Santis, Maria Carmen
|b 13
700 1 _ |a Dunning, Alison M
|b 14
700 1 _ |a Elliott, Rebecca M
|b 15
700 1 _ |a Fachal, Laura
|b 16
700 1 _ |a Gómez-Caamaño, Antonio
|b 17
700 1 _ |a Gutiérrez-Enríquez, Sara
|b 18
700 1 _ |a Johnson, Kerstie
|b 19
700 1 _ |a Lobato-Busto, Ramón
|b 20
700 1 _ |a Kerns, Sarah L
|b 21
700 1 _ |a Post, Giselle
|b 22
700 1 _ |a Rancati, Tiziana
|b 23
700 1 _ |a Reyes, Victoria
|b 24
700 1 _ |a Rosenstein, Barry S
|b 25
700 1 _ |a Seibold, Petra
|0 P:(DE-He78)fd17a8dbf8d08ea5bb656dfef7398215
|b 26
|u dkfz
700 1 _ |a Seoane, Alejandro
|b 27
700 1 _ |a Sosa-Fajardo, Paloma
|b 28
700 1 _ |a Sperk, Elena
|b 29
700 1 _ |a Taboada-Valladares, Begoña
|b 30
700 1 _ |a Valdagni, Riccardo
|b 31
700 1 _ |a Vega, Ana
|b 32
700 1 _ |a Veldeman, Liv
|b 33
700 1 _ |a Ward, Tim
|b 34
700 1 _ |a West, Catharine M
|b 35
700 1 _ |a Symonds, R Paul
|b 36
700 1 _ |a Talbot, Christopher J
|b 37
700 1 _ |a Consortium, REQUITE
|b 38
|e Collaboration Author
773 _ _ |a 10.1016/j.ebiom.2022.104269
|g Vol. 84, p. 104269 -
|0 PERI:(DE-600)2799017-5
|p 104269
|t EBioMedicine
|v 84
|y 2022
|x 2352-3964
909 C O |o oai:inrepo02.dkfz.de:181851
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 26
|6 P:(DE-He78)fd17a8dbf8d08ea5bb656dfef7398215
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND (No Version)
|0 LIC:(DE-HGF)CCBYNCNDNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EBIOMEDICINE : 2021
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-26T13:10:09Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-26T13:10:09Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-01-26T13:10:09Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-25
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b EBIOMEDICINE : 2021
|d 2022-11-25
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21