001     181926
005     20240229145701.0
024 7 _ |a 10.7554/eLife.76721
|2 doi
024 7 _ |a altmetric:136474848
|2 altmetric
024 7 _ |a pmid:36155135
|2 pmid
037 _ _ |a DKFZ-2022-02296
082 _ _ |a 600
100 1 _ |a Vollmuth, Nadine
|0 0000-0002-1003-4410
|b 0
245 _ _ |a c-Myc plays a key role in IFN-γ-induced persistence of Chlamydia trachomatis
260 _ _ |a Cambridge
|c 2022
|b eLife Sciences Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1664970393_8111
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
536 _ _ |a 311 - Zellbiologie und Tumorbiologie (POF4-311)
|0 G:(DE-HGF)POF4-311
|c POF4-311
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: inrepo02.dkfz.de
700 1 _ |a Schlicker, Lisa
|0 P:(DE-He78)e52c8f6ae826320eaf2fb173e162070d
|b 1
|u dkfz
700 1 _ |a Guo, Yongxia
|b 2
700 1 _ |a Hovhannisyan, Pargev
|b 3
700 1 _ |a Janaki-Raman, Sudha
|b 4
700 1 _ |a Kurmasheva, Naziia
|b 5
700 1 _ |a Schmitz, Werner
|b 6
700 1 _ |a Schulze, Almut
|0 P:(DE-He78)94ae391f53fb9285e1b68f9930615af1
|b 7
|u dkfz
700 1 _ |a Stelzner, Kathrin
|b 8
700 1 _ |a Rajeeve, Karthika
|b 9
700 1 _ |a Rudel, Thomas
|0 0000-0003-4740-6991
|b 10
773 _ _ |a 10.7554/eLife.76721
|g Vol. 11, p. e76721
|0 PERI:(DE-600)2687154-3
|p e76721
|t eLife
|v 11
|y 2022
|x 2050-084X
909 C O |o oai:inrepo02.dkfz.de:181926
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)e52c8f6ae826320eaf2fb173e162070d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)94ae391f53fb9285e1b68f9930615af1
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-311
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Zellbiologie und Tumorbiologie
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELIFE : 2021
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-23T12:20:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-23T12:20:44Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-09-23T12:20:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-23
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2022-11-23
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ELIFE : 2021
|d 2022-11-23
920 1 _ |0 I:(DE-He78)W120-20160331
|k W120
|l Proteinanalyse
|x 0
920 1 _ |0 I:(DE-He78)A410-20160331
|k A410
|l Metabolismus und Microenvironment
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)W120-20160331
980 _ _ |a I:(DE-He78)A410-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21