Home > Publications database > ERBB and P-glycoprotein inhibitors break resistance in relapsed neuroblastoma models through P-glycoprotein. > print |
001 | 181935 | ||
005 | 20240229145701.0 | ||
024 | 7 | _ | |a 10.1002/1878-0261.13318 |2 doi |
024 | 7 | _ | |a pmid:36181342 |2 pmid |
024 | 7 | _ | |a 1574-7891 |2 ISSN |
024 | 7 | _ | |a 1878-0261 |2 ISSN |
024 | 7 | _ | |a altmetric:138429307 |2 altmetric |
037 | _ | _ | |a DKFZ-2022-02305 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Rösch, Lisa |0 P:(DE-He78)11a5984ad9d927df64e2bd688545375f |b 0 |e First author |u dkfz |
245 | _ | _ | |a ERBB and P-glycoprotein inhibitors break resistance in relapsed neuroblastoma models through P-glycoprotein. |
260 | _ | _ | |a Hoboken, NJ |c 2023 |b John Wiley & Sons, Inc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1673353068_25367 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a #EA:B310#LA:B310# / 2023 Jan;17(1):37-58 |
520 | _ | _ | |a Chemotherapy resistance is a persistent clinical problem in relapsed high-risk neuroblastomas. We tested a panel of 15 drugs for sensitization of neuroblastoma cells to the conventional chemotherapeutic vincristine, identifying tariquidar, an inhibitor of the transmembrane pump P-glycoprotein (P-gp/ABCB1), and the ERBB family inhibitor afatinib as the top resistance breakers. Both compounds were efficient in sensitizing neuroblastoma cells to vincristine in trypan blue exclusion assays and in inducing apoptotic cell death. The evaluation of ERBB signaling revealed no functional inhibition, i.e., dephosphorylation of the downstream pathways upon afatinib treatment but direct off-target interference with P-gp function. Depletion of ABCB1, but not ERRB4, sensitized cells to vincristine treatment. P-gp inhibition substantially broke vincristine resistance in vitro and in vivo (zebrafish embryo xenograft). The analysis of gene expression datasets of more than 50 different neuroblastoma cell lines (primary and relapsed) and more than 160 neuroblastoma patient samples from the pediatric precision medicine platform INFORM (Individualized Therapy For Relapsed Malignancies in Childhood) confirmed a pivotal role of P-gp specifically in neuroblastoma resistance at relapse, while the ERBB family appears to play a minor part. |
536 | _ | _ | |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312) |0 G:(DE-HGF)POF4-312 |c POF4-312 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a apoptotic cell death |2 Other |
650 | _ | 7 | |a chemotherapy resistance |2 Other |
650 | _ | 7 | |a off-target |2 Other |
650 | _ | 7 | |a pediatric patient samples |2 Other |
650 | _ | 7 | |a precision medicine |2 Other |
650 | _ | 7 | |a zebrafish xenograft model |2 Other |
700 | 1 | _ | |a Herter, Sonja |0 P:(DE-He78)ea170691ed65b95f10820c4c61d6e2cd |b 1 |u dkfz |
700 | 1 | _ | |a Najafi, Sara |0 P:(DE-He78)f08873535c440e3ce033c84d5786f70f |b 2 |u dkfz |
700 | 1 | _ | |a Ridinger, Johannes |0 P:(DE-He78)53112ef656923758316e7079710bc988 |b 3 |u dkfz |
700 | 1 | _ | |a Peterziel, Heike |0 P:(DE-He78)2727b5cb63b52d0137d4f4e8f110ee7e |b 4 |u dkfz |
700 | 1 | _ | |a Cinatl, Jindrich |b 5 |
700 | 1 | _ | |a Jones, David T W |0 P:(DE-He78)551bb92841f634070997aa168d818492 |b 6 |u dkfz |
700 | 1 | _ | |a Michaelis, Martin |b 7 |
700 | 1 | _ | |a Witt, Olaf |0 P:(DE-He78)143af26de9d57bf624771616318aaf7c |b 8 |u dkfz |
700 | 1 | _ | |a Oehme, Ina |0 P:(DE-He78)908367a659dea9e28dac34592b3c46e5 |b 9 |e Last author |u dkfz |
773 | _ | _ | |a 10.1002/1878-0261.13318 |g p. 1878-0261.13318 |0 PERI:(DE-600)2322586-5 |n 1 |p 37-58 |t Molecular oncology |v 17 |y 2023 |x 1574-7891 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:181935 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)11a5984ad9d927df64e2bd688545375f |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-He78)ea170691ed65b95f10820c4c61d6e2cd |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 P:(DE-He78)f08873535c440e3ce033c84d5786f70f |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 P:(DE-He78)53112ef656923758316e7079710bc988 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 4 |6 P:(DE-He78)2727b5cb63b52d0137d4f4e8f110ee7e |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 6 |6 P:(DE-He78)551bb92841f634070997aa168d818492 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 8 |6 P:(DE-He78)143af26de9d57bf624771616318aaf7c |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 9 |6 P:(DE-He78)908367a659dea9e28dac34592b3c46e5 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-312 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Funktionelle und strukturelle Genomforschung |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-01-28 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-28 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-01-28 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-01-28 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-01-28 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MOL ONCOL : 2022 |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-01-06T16:01:33Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-01-06T16:01:33Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Open peer review |d 2023-01-06T16:01:33Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-25 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-25 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b MOL ONCOL : 2022 |d 2023-10-25 |
920 | 2 | _ | |0 I:(DE-He78)B310-20160331 |k B310 |l KKE Pädiatrische Onkologie |x 0 |
920 | 1 | _ | |0 I:(DE-He78)B310-20160331 |k B310 |l KKE Pädiatrische Onkologie |x 0 |
920 | 1 | _ | |0 I:(DE-He78)HD01-20160331 |k HD01 |l DKTK HD zentral |x 1 |
920 | 1 | _ | |0 I:(DE-He78)B360-20160331 |k B360 |l Pediatric Glioma |x 2 |
920 | 0 | _ | |0 I:(DE-He78)B310-20160331 |k B310 |l KKE Pädiatrische Onkologie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)B310-20160331 |
980 | _ | _ | |a I:(DE-He78)HD01-20160331 |
980 | _ | _ | |a I:(DE-He78)B360-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|