000181958 001__ 181958
000181958 005__ 20240229145703.0
000181958 0247_ $$2doi$$a10.1038/s41598-022-20639-0
000181958 0247_ $$2pmid$$apmid:36195647
000181958 037__ $$aDKFZ-2022-02328
000181958 041__ $$aEnglish
000181958 082__ $$a600
000181958 1001_ $$aJeran, Stephanie$$b0
000181958 245__ $$aPrediction of activity-related energy expenditure under free-living conditions using accelerometer-derived physical activity.
000181958 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2022
000181958 3367_ $$2DRIVER$$aarticle
000181958 3367_ $$2DataCite$$aOutput Types/Journal article
000181958 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1665038761_20168
000181958 3367_ $$2BibTeX$$aARTICLE
000181958 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000181958 3367_ $$00$$2EndNote$$aJournal Article
000181958 520__ $$aThe purpose of the study was to develop prediction models to estimate physical activity (PA)-related energy expenditure (AEE) based on accelerometry and additional variables in free-living adults. In 50 volunteers (20-69 years) PA was determined over 2 weeks using the hip-worn Actigraph GT3X + as vector magnitude (VM) counts/minute. AEE was calculated based on total daily EE (measured by doubly-labeled water), resting EE (indirect calorimetry), and diet-induced thermogenesis. Anthropometry, body composition, blood pressure, heart rate, fitness, sociodemographic and lifestyle factors, PA habits and food intake were assessed. Prediction models were developed by context-grouping of 75 variables, and within-group stepwise selection (stage I). All significant variables were jointly offered for second stepwise regression (stage II). Explained AEE variance was estimated based on variables remaining significant. Alternative scenarios with different availability of groups from stage I were simulated. When all 11 significant variables (selected in stage I) were jointly offered for stage II stepwise selection, the final model explained 70.7% of AEE variance and included VM-counts (33.8%), fat-free mass (26.7%), time in moderate PA + walking (6.4%) and carbohydrate intake (3.9%). Alternative scenarios explained 53.8-72.4% of AEE. In conclusion, accelerometer counts and fat-free mass explained most of variance in AEE. Prediction was further improved by PA information from questionnaires. These results may be used for AEE prediction in studies using accelerometry.
000181958 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000181958 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000181958 7001_ $$aSteinbrecher, Astrid$$b1
000181958 7001_ $$aHaas, Verena$$b2
000181958 7001_ $$aMähler, Anja$$b3
000181958 7001_ $$aBoschmann, Michael$$b4
000181958 7001_ $$aWesterterp, Klaas R$$b5
000181958 7001_ $$aBrühmann, Boris A$$b6
000181958 7001_ $$0P:(DE-He78)a0c2037d9054be26907a05ae520d5756$$aSteindorf, Karen$$b7$$udkfz
000181958 7001_ $$aPischon, Tobias$$b8
000181958 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-022-20639-0$$gVol. 12, no. 1, p. 16578$$n1$$p16578$$tScientific reports$$v12$$x2045-2322$$y2022
000181958 909CO $$ooai:inrepo02.dkfz.de:181958$$pVDB
000181958 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a0c2037d9054be26907a05ae520d5756$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000181958 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000181958 9141_ $$y2022
000181958 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-02-03
000181958 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000181958 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-03
000181958 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000181958 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-03
000181958 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-03
000181958 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-09
000181958 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-09
000181958 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-08T09:38:07Z
000181958 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-08T09:38:07Z
000181958 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-08-08T09:38:07Z
000181958 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-09
000181958 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-09
000181958 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-09
000181958 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-09
000181958 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-09
000181958 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-09
000181958 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-09
000181958 9201_ $$0I:(DE-He78)C110-20160331$$kC110$$lBewegung, Präventionsforschung und Krebs$$x0
000181958 980__ $$ajournal
000181958 980__ $$aVDB
000181958 980__ $$aI:(DE-He78)C110-20160331
000181958 980__ $$aUNRESTRICTED