001     181958
005     20240229145703.0
024 7 _ |a 10.1038/s41598-022-20639-0
|2 doi
024 7 _ |a pmid:36195647
|2 pmid
037 _ _ |a DKFZ-2022-02328
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Jeran, Stephanie
|b 0
245 _ _ |a Prediction of activity-related energy expenditure under free-living conditions using accelerometer-derived physical activity.
260 _ _ |a [London]
|c 2022
|b Macmillan Publishers Limited, part of Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1665038761_20168
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The purpose of the study was to develop prediction models to estimate physical activity (PA)-related energy expenditure (AEE) based on accelerometry and additional variables in free-living adults. In 50 volunteers (20-69 years) PA was determined over 2 weeks using the hip-worn Actigraph GT3X + as vector magnitude (VM) counts/minute. AEE was calculated based on total daily EE (measured by doubly-labeled water), resting EE (indirect calorimetry), and diet-induced thermogenesis. Anthropometry, body composition, blood pressure, heart rate, fitness, sociodemographic and lifestyle factors, PA habits and food intake were assessed. Prediction models were developed by context-grouping of 75 variables, and within-group stepwise selection (stage I). All significant variables were jointly offered for second stepwise regression (stage II). Explained AEE variance was estimated based on variables remaining significant. Alternative scenarios with different availability of groups from stage I were simulated. When all 11 significant variables (selected in stage I) were jointly offered for stage II stepwise selection, the final model explained 70.7% of AEE variance and included VM-counts (33.8%), fat-free mass (26.7%), time in moderate PA + walking (6.4%) and carbohydrate intake (3.9%). Alternative scenarios explained 53.8-72.4% of AEE. In conclusion, accelerometer counts and fat-free mass explained most of variance in AEE. Prediction was further improved by PA information from questionnaires. These results may be used for AEE prediction in studies using accelerometry.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Steinbrecher, Astrid
|b 1
700 1 _ |a Haas, Verena
|b 2
700 1 _ |a Mähler, Anja
|b 3
700 1 _ |a Boschmann, Michael
|b 4
700 1 _ |a Westerterp, Klaas R
|b 5
700 1 _ |a Brühmann, Boris A
|b 6
700 1 _ |a Steindorf, Karen
|0 P:(DE-He78)a0c2037d9054be26907a05ae520d5756
|b 7
|u dkfz
700 1 _ |a Pischon, Tobias
|b 8
773 _ _ |a 10.1038/s41598-022-20639-0
|g Vol. 12, no. 1, p. 16578
|0 PERI:(DE-600)2615211-3
|n 1
|p 16578
|t Scientific reports
|v 12
|y 2022
|x 2045-2322
909 C O |o oai:inrepo02.dkfz.de:181958
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)a0c2037d9054be26907a05ae520d5756
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-08-08T09:38:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-08-08T09:38:07Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-08-08T09:38:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-09
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-09
920 1 _ |0 I:(DE-He78)C110-20160331
|k C110
|l Bewegung, Präventionsforschung und Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C110-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21