001     182090
005     20240229145707.0
024 7 _ |a 10.1530/ETJ-22-0058
|2 doi
024 7 _ |a pmid:35976137
|2 pmid
024 7 _ |a pmc:PMC9513665
|2 pmc
024 7 _ |a 2235-0640
|2 ISSN
024 7 _ |a 2235-0802
|2 ISSN
024 7 _ |a altmetric:134628090
|2 altmetric
037 _ _ |a DKFZ-2022-02408
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Brigante, Giulia
|b 0
245 _ _ |a Genetic signature of differentiated thyroid carcinoma susceptibility: a machine learning approach.
260 _ _ |a Basel
|c 2022
|b Karger
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1666085110_24889
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a To identify a peculiar genetic combination predisposing to differentiated thyroid carcinoma (DTC), we selected a set of single nucleotide polymorphisms (SNPs) associated with DTC risk, considering polygenic risk score (PRS), Bayesian statistics and a machine learning (ML) classifier to describe cases and controls in three different datasets. Dataset 1 (649 DTC, 431 controls) has been previously genotyped in a genome-wide association study (GWAS) on Italian DTC. Dataset 2 (234 DTC, 101 controls) and dataset 3 (404 DTC, 392 controls) were genotyped. Associations of 171 SNPs reported to predispose to DTC in candidate studies were extracted from the GWAS of dataset 1, followed by replication of SNPs associated with DTC risk (P < 0.05) in dataset 2. The reliability of the identified SNPs was confirmed by PRS and Bayesian statistics after merging the three datasets. SNPs were used to describe the case/control state of individuals by ML classifier. Starting from 171 SNPs associated with DTC, 15 were positive in both datasets 1 and 2. Using these markers, PRS revealed that individuals in the fifth quintile had a seven-fold increased risk of DTC than those in the first. Bayesian inference confirmed that the selected 15 SNPs differentiate cases from controls. Results were corroborated by ML, finding a maximum AUC of about 0.7. A restricted selection of only 15 DTC-associated SNPs is able to describe the inner genetic structure of Italian individuals, and ML allows a fair prediction of case or control status based solely on the individual genetic background.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a differentiated thyroid cancer
|2 Other
650 _ 7 |a machine learning
|2 Other
650 _ 7 |a single nucleotide polymorphism
|2 Other
700 1 _ |a Lazzaretti, Clara
|b 1
700 1 _ |a Paradiso, Elia
|b 2
700 1 _ |a Nuzzo, Federico
|b 3
700 1 _ |a Sitti, Martina
|b 4
700 1 _ |a Tüttelmann, Frank
|b 5
700 1 _ |a Moretti, Gabriele
|b 6
700 1 _ |a Silvestri, Roberto
|b 7
700 1 _ |a Gemignani, Federica
|b 8
700 1 _ |a Försti, Asta
|0 P:(DE-He78)f26164c08f2f14abcf31e52e13ee3696
|b 9
|u dkfz
700 1 _ |a Hemminki, Kari
|0 P:(DE-He78)19b0ec1cea271419d9fa8680e6ed6865
|b 10
|u dkfz
700 1 _ |a Elisei, Rossella
|b 11
700 1 _ |a Romei, Cristina
|b 12
700 1 _ |a Zizzi, Eric Adriano
|b 13
700 1 _ |a Deriu, Marco Agostino
|b 14
700 1 _ |a Simoni, Manuela
|b 15
700 1 _ |a Landi, Stefano
|0 0000-0001-8364-6357
|b 16
700 1 _ |a Casarini, Livio
|0 0000-0001-5571-392X
|b 17
773 _ _ |a 10.1530/ETJ-22-0058
|g Vol. 11, no. 5, p. e220058
|0 PERI:(DE-600)2659767-6
|n 5
|p e220058
|t European thyroid journal
|v 11
|y 2022
|x 2235-0640
909 C O |o oai:inrepo02.dkfz.de:182090
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)f26164c08f2f14abcf31e52e13ee3696
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)19b0ec1cea271419d9fa8680e6ed6865
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-26
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-25
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR THYROID J : 2021
|d 2022-11-25
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-25
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 0
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 1
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21