001     182096
005     20240229145708.0
024 7 _ |a 10.1097/RLI.0000000000000891
|2 doi
024 7 _ |a pmid:35640004
|2 pmid
024 7 _ |a 0020-9996
|2 ISSN
024 7 _ |a 1536-0210
|2 ISSN
024 7 _ |a altmetric:129070048
|2 altmetric
037 _ _ |a DKFZ-2022-02414
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Wennmann, Markus
|0 P:(DE-He78)e7c860fe438c12cbe5f071b3f86d5738
|b 0
|e First author
|u dkfz
245 _ _ |a Combining Deep Learning and Radiomics for Automated, Objective, Comprehensive Bone Marrow Characterization From Whole-Body MRI: A Multicentric Feasibility Study.
260 _ _ |a [s.l.]
|c 2022
|b Ovid
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1666084780_24890
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E010#EA:E230#LA:E010#LA:E230#
520 _ _ |a Disseminated bone marrow (BM) involvement is frequent in multiple myeloma (MM). Whole-body magnetic resonance imaging (wb-MRI) enables to evaluate the whole BM. Reading of such whole-body scans is time-consuming, and yet radiologists can transfer only a small fraction of the information of the imaging data set to the report. This limits the influence that imaging can have on clinical decision-making and in research toward precision oncology. The objective of this feasibility study was to implement a concept for automatic, comprehensive characterization of the BM from wb-MRI, by automatic BM segmentation and subsequent radiomics analysis of 30 different BM spaces (BMS).This retrospective multicentric pilot study used a total of 106 wb-MRI from 102 patients with (smoldering) MM from 8 centers. Fifty wb-MRI from center 1 were used for training of segmentation algorithms (nnU-Nets) and radiomics algorithms. Fifty-six wb-MRI from 8 centers, acquired with a variety of different MRI scanners and protocols, were used for independent testing. Manual segmentations of 2700 BMS from 90 wb-MRI were performed for training and testing of the segmentation algorithms. For each BMS, 296 radiomics features were calculated individually. Dice score was used to assess similarity between automatic segmentations and manual reference segmentations.The 'multilabel nnU-Net' segmentation algorithm, which performs segmentation of 30 BMS and labels them individually, reached mean dice scores of 0.88 ± 0.06/0.87 ± 0.06/0.83 ± 0.11 in independent test sets from center 1/center 2/center 3-8 (interrater variability between radiologists, 0.88 ± 0.01). The subset from the multicenter, multivendor test set (center 3-8) that was of high imaging quality was segmented with high precision (mean dice score, 0.87), comparable to the internal test data from center 1. The radiomic BM phenotype consisting of 8880 descriptive parameters per patient, which result from calculation of 296 radiomics features for each of the 30 BMS, was calculated for all patients. Exemplary cases demonstrated connections between typical BM patterns in MM and radiomic signatures of the respective BMS. In plausibility tests, predicted size and weight based on radiomics models of the radiomic BM phenotype significantly correlated with patients' actual size and weight ( P = 0.002 and P = 0.003, respectively).This pilot study demonstrates the feasibility of automatic, objective, comprehensive BM characterization from wb-MRI in multicentric data sets. This concept allows the extraction of high-dimensional phenotypes to capture the complexity of disseminated BM disorders from imaging. Further studies need to assess the clinical potential of this method for automatic staging, therapy response assessment, or prediction of biopsy results.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 2 |a Bone Marrow: diagnostic imaging
|2 MeSH
650 _ 2 |a Deep Learning
|2 MeSH
650 _ 2 |a Feasibility Studies
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging: methods
|2 MeSH
650 _ 2 |a Neoplasms
|2 MeSH
650 _ 2 |a Pilot Projects
|2 MeSH
650 _ 2 |a Precision Medicine
|2 MeSH
650 _ 2 |a Retrospective Studies
|2 MeSH
650 _ 2 |a Whole Body Imaging
|2 MeSH
700 1 _ |a Klein, André
|0 P:(DE-He78)c7e087ffc0e1f319d0a00fca36012845
|b 1
|e First author
|u dkfz
700 1 _ |a Bauer, Fabian
|0 P:(DE-He78)adc25b1dbf85abdffe5d2300d1265031
|b 2
|u dkfz
700 1 _ |a Chmelik, Jiri
|0 P:(DE-He78)f077a58da75628246c446610ef17dcb9
|b 3
700 1 _ |a Grözinger, Martin
|0 P:(DE-He78)cf4656ab05919cc784af4e9812f5a9fa
|b 4
|u dkfz
700 1 _ |a Uhlenbrock, Charlotte
|0 P:(DE-He78)5b981b1ba485b2e221430d51102a1546
|b 5
|u dkfz
700 1 _ |a Lochner, Jakob
|0 P:(DE-He78)08730c69aeee4474df9b41511469d637
|b 6
700 1 _ |a Nonnenmacher, Tobias
|b 7
700 1 _ |a Rotkopf, Lukas Thomas
|0 P:(DE-He78)d7135c1486ffd923f71735d40a3d7a0c
|b 8
|u dkfz
700 1 _ |a Sauer, Sandra
|b 9
700 1 _ |a Hielscher, Thomas
|0 P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f
|b 10
|u dkfz
700 1 _ |a Götz, Michael
|0 P:(DE-He78)abd768f879e71d08068d48fabb7e96cf
|b 11
|u dkfz
700 1 _ |a Floca, Ralf Omar
|0 P:(DE-He78)f0ab09cfecf353f363bab4cc983de95d
|b 12
|u dkfz
700 1 _ |a Neher, Peter
|0 P:(DE-He78)64313331bb3bdc0902ff88697f402c92
|b 13
|u dkfz
700 1 _ |a Bonekamp, David
|0 P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93
|b 14
|u dkfz
700 1 _ |a Hillengass, Jens
|b 15
700 1 _ |a Kleesiek, Jens
|b 16
700 1 _ |a Weinhold, Niels
|b 17
700 1 _ |a Weber, Tim Frederik
|b 18
700 1 _ |a Goldschmidt, Hartmut
|0 P:(DE-He78)a1aa959d47e3e026abe157a8adf24b96
|b 19
|u dkfz
700 1 _ |a Delorme, Stefan
|0 P:(DE-He78)3e76653311420a51a5faeb80363bd73e
|b 20
|u dkfz
700 1 _ |a Maier-Hein, Klaus
|0 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
|b 21
|e Last author
|u dkfz
700 1 _ |a Schlemmer, Heinz-Peter
|0 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
|b 22
|e Last author
|u dkfz
773 _ _ |a 10.1097/RLI.0000000000000891
|g Vol. 57, no. 11, p. 752 - 763
|0 PERI:(DE-600)2041543-6
|n 11
|p 752 - 763
|t Investigative radiology
|v 57
|y 2022
|x 0020-9996
909 C O |o oai:inrepo02.dkfz.de:182096
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)e7c860fe438c12cbe5f071b3f86d5738
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)c7e087ffc0e1f319d0a00fca36012845
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)adc25b1dbf85abdffe5d2300d1265031
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)f077a58da75628246c446610ef17dcb9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)cf4656ab05919cc784af4e9812f5a9fa
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)5b981b1ba485b2e221430d51102a1546
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)08730c69aeee4474df9b41511469d637
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)d7135c1486ffd923f71735d40a3d7a0c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)abd768f879e71d08068d48fabb7e96cf
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)f0ab09cfecf353f363bab4cc983de95d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)64313331bb3bdc0902ff88697f402c92
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 19
|6 P:(DE-He78)a1aa959d47e3e026abe157a8adf24b96
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 20
|6 P:(DE-He78)3e76653311420a51a5faeb80363bd73e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 21
|6 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 22
|6 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a Allianz-Lizenz
|0 StatID:(DE-HGF)0410
|2 StatID
|d 2022-11-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INVEST RADIOL : 2021
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-29
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b INVEST RADIOL : 2021
|d 2022-11-29
920 2 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 0
920 2 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 1
920 1 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 0
920 1 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 1
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 2
920 0 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 0
920 0 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E010-20160331
980 _ _ |a I:(DE-He78)E230-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21