000182136 001__ 182136
000182136 005__ 20240918112025.0
000182136 0247_ $$2doi$$a10.1007/s00432-022-04410-6
000182136 0247_ $$2pmid$$apmid:36251065
000182136 0247_ $$2ISSN$$a0084-5353
000182136 0247_ $$2ISSN$$a0171-5216
000182136 0247_ $$2ISSN$$a0943-9382
000182136 0247_ $$2ISSN$$a1432-1335
000182136 0247_ $$2altmetric$$aaltmetric:137318997
000182136 037__ $$aDKFZ-2022-02453
000182136 041__ $$aEnglish
000182136 082__ $$a610
000182136 1001_ $$0P:(DE-He78)17064a887f14c1cee3ae16af3cf73314$$aPervaiz, Asim$$b0$$eFirst author
000182136 245__ $$aExpression profiling of anticancer genes in colorectal cancer patients and their in vitro induction by riproximin, a ribosomal inactivating plant protein.
000182136 260__ $$aBerlin$$bSpringer$$c2023
000182136 264_1 $$2Crossref$$3online$$bSpringer Science and Business Media LLC$$c2022-10-17
000182136 3367_ $$2DRIVER$$aarticle
000182136 3367_ $$2DataCite$$aOutput Types/Journal article
000182136 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1726651200_14745
000182136 3367_ $$2BibTeX$$aARTICLE
000182136 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000182136 3367_ $$00$$2EndNote$$aJournal Article
000182136 500__ $$a#EA:G401#LA:G401 / 2023 Jul;149(8):4825-4837
000182136 520__ $$aEctopic expression of anticancer genes (ACGs) imposes antineoplastic effects on transformed cells. Clinically, reduced expression of these genes has been linked with poor prognosis, metastasis and chemo/radiotherapy resistance in cancers. Identifying expression pattern of ACGs is crucial to establish their prognostic and therapeutic relevance in colorectal cancer (CRC). In addition to the clinical perspective, naturally occurring compounds can be explored in parallel for inducing ACGs to achieve cancer cell-specific death.Expression profiles of three ACGs (NOXA, PAR-4, TRAIL) were identified via real-time PCR in CRC clinical isolates. Time lapse-based expression modifications in ACGs were studied in a CRC liver metastasis animal model using microarray methodology. Effects of a purified plant protein (riproximin) on selected ACGs were identified in three primary and metastatic CRC cell lines by real-time PCR. Lastly, importance of the ACGs in a cellular environment was highlighted via bioinformatic analysis.ACGs (except NOXA) were persistently downregulated in clinical isolates when comparing the overall mean expression values with normal mucosa levels. In vivo studies showed a prominent inhibition of NOXA and PAR-4 genes in implanted CRC cells during rat liver colonization. TRAIL showed deviation from this theme while showing marked induction during the early period of liver colonization (days 3 and 6 after CRC cell implantation). Riproximin exhibited substantial potential of inducing ACGs at transcriptome levels in selected CRC cell lines. Bioinformatic analysis showed that vital molecular/functional aspects of a cell are associated with the presence of ACGs.ACGs are downregulated in primary and metastatic phase of CRC. Riproximin effectively induces ACGs in CRC cells and can be exploited for clinical investigations over time.
000182136 536__ $$0G:(DE-HGF)POF4-311$$a311 - Zellbiologie und Tumorbiologie (POF4-311)$$cPOF4-311$$fPOF IV$$x0
000182136 542__ $$2Crossref$$i2022-10-17$$uhttps://www.springer.com/tdm
000182136 542__ $$2Crossref$$i2022-10-17$$uhttps://www.springer.com/tdm
000182136 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000182136 650_7 $$2Other$$aAnticancer genes
000182136 650_7 $$2Other$$aColorectal cancer
000182136 650_7 $$2Other$$aExpression patterns
000182136 650_7 $$2Other$$aInducing agent/protein
000182136 650_7 $$2Other$$aRiproximin
000182136 7001_ $$aSaleem, Talha$$b1
000182136 7001_ $$aKanwal, Kinzah$$b2
000182136 7001_ $$aRaza, Syed Mohsin$$b3
000182136 7001_ $$aIqbal, Sana$$b4
000182136 7001_ $$0P:(DE-He78)8da28eac875d8c53905ac3f4393784b8$$aZepp, Michael$$b5
000182136 7001_ $$0P:(DE-He78)c5c6c8e77d4534ba39f5afec86a3a23a$$aGeorges, Rania$$b6
000182136 7001_ $$0P:(DE-He78)7e60033e3eaaebb9ba30c905ade4a676$$aBerger, Martin$$b7$$eLast author
000182136 77318 $$2Crossref$$3journal-article$$a10.1007/s00432-022-04410-6$$bSpringer Science and Business Media LLC$$d2022-10-17$$tJournal of Cancer Research and Clinical Oncology$$x0171-5216$$y2022
000182136 773__ $$0PERI:(DE-600)1459285-X$$a10.1007/s00432-022-04410-6$$n8$$p4825-4837$$tJournal of cancer research and clinical oncology$$v149$$x0171-5216$$y2023
000182136 909CO $$ooai:inrepo02.dkfz.de:182136$$pVDB
000182136 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)17064a887f14c1cee3ae16af3cf73314$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000182136 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8da28eac875d8c53905ac3f4393784b8$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000182136 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c5c6c8e77d4534ba39f5afec86a3a23a$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000182136 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7e60033e3eaaebb9ba30c905ade4a676$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000182136 9131_ $$0G:(DE-HGF)POF4-311$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vZellbiologie und Tumorbiologie$$x0
000182136 9141_ $$y2022
000182136 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
000182136 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
000182136 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21
000182136 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
000182136 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21
000182136 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
000182136 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CANCER RES CLIN : 2022$$d2023-10-21
000182136 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
000182136 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
000182136 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-21
000182136 9202_ $$0I:(DE-He78)G401-20160331$$kG401$$lMolekulare Toxikologie und Chemotherapie$$x0
000182136 9201_ $$0I:(DE-He78)G401-20160331$$kG401$$lMolekulare Toxikologie und Chemotherapie$$x0
000182136 9200_ $$0I:(DE-He78)G401-20160331$$kG401$$lMolekulare Toxikologie und Chemotherapie$$x0
000182136 980__ $$ajournal
000182136 980__ $$aVDB
000182136 980__ $$aI:(DE-He78)G401-20160331
000182136 980__ $$aUNRESTRICTED
000182136 999C5 $$1G AbuAli$$2Crossref$$9-- missing cx lookup --$$a10.1038/onc.2014.93$$p1718 -$$tOncogene$$uAbuAli G, Chaisaklert W, Stelloo E, Pazarentzos E, Hwang MS, Qize D, Harding SV, Al-Rubaish A, Alzahrani AJ, Al-Ali A, Sanders TA, Aboagye EO, Grimm S (2015) The anticancer gene ORCTL3 targets stearoyl-CoA desaturase-1 for tumour-specific apoptosis. Oncogene 34(13):1718–1728. https://doi.org/10.1038/onc.2014.93$$v34$$y2015
000182136 999C5 $$1H Adwan$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.biotechadv.2014.03.008$$p1077 -$$tBiotechnol Adv$$uAdwan H, Bayer H, Pervaiz A, Sagini M, Berger MR (2014a) Riproximin is a recently discovered type II ribosome inactivating protein with potential for treating cancer. Biotechnol Adv 32(6):1077–1090. https://doi.org/10.1016/j.biotechadv.2014.03.008$$v32$$y2014
000182136 999C5 $$1H Adwan$$2Crossref$$9-- missing cx lookup --$$a10.4161/cbt.29503$$p1185 -$$tCancer Biol Ther$$uAdwan H, Murtaja A, Kadhim Al-Taee K, Pervaiz A, Hielscher T, Berger MR (2014b) Riproximin’s activity depends on gene expression and sensitizes PDAC cells to TRAIL. Cancer Biol Ther 15(9):1185–1197. https://doi.org/10.4161/cbt.29503$$v15$$y2014
000182136 999C5 $$1JV Alvarez$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ccr.2013.05.007$$p30 -$$tCancer Cell$$uAlvarez JV, Pan TC, Ruth J, Feng Y, Zhou A, Pant D, Grimley JS, Wandless TJ, Demichele A, Investigators IST, Chodosh LA (2013) Par-4 downregulation promotes breast cancer recurrence by preventing multinucleation following targeted therapy. Cancer Cell 24(1):30–44. https://doi.org/10.1016/j.ccr.2013.05.007$$v24$$y2013
000182136 999C5 $$1H Bayer$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.pep.2011.11.018$$p97 -$$tProtein Expr Purif$$uBayer H, Ey N, Wattenberg A, Voss C, Berger MR (2012a) Purification and characterization of riproximin from Ximenia americana fruit kernels. Protein Expr Purif 82(1):97–105. https://doi.org/10.1016/j.pep.2011.11.018$$v82$$y2012
000182136 999C5 $$1H Bayer$$2Crossref$$9-- missing cx lookup --$$a10.1074/jbc.M112.368548$$p35873 -$$tJ Biol Chem$$uBayer H, Essig K, Stanzel S, Frank M, Gildersleeve JC, Berger MR, Voss C (2012b) Evaluation of riproximin binding properties reveals a novel mechanism for cellular targeting. J Biol Chem 287(43):35873–35886. https://doi.org/10.1074/jbc.M112.368548$$v287$$y2012
000182136 999C5 $$1H Belkahla$$2Crossref$$9-- missing cx lookup --$$a10.1039/c7nr01469d$$p5755 -$$tNanoscale$$uBelkahla H, Herlem G, Picaud F, Gharbi T, Hemadi M, Ammar S, Micheau O (2017) TRAIL-NP hybrids for cancer therapy: a review. Nanoscale 9(18):5755–5768. https://doi.org/10.1039/c7nr01469d$$v9$$y2017
000182136 999C5 $$1A Bolognesi$$2Crossref$$9-- missing cx lookup --$$a10.3390/molecules21121627$$tMolecules$$uBolognesi A, Bortolotti M, Maiello S, Battelli MG, Polito L (2016) Ribosome-inactivating proteins from plants: a historical overview. Molecules. https://doi.org/10.3390/molecules21121627$$y2016
000182136 999C5 $$1P Bruno$$2Crossref$$9-- missing cx lookup --$$a10.1038/cdd.2008.164$$p184 -$$tCell Death Differ$$uBruno P, Brinkmann CR, Boulanger MC, Flinterman M, Klanrit P, Landry MC, Portsmouth D, Borst J, Tavassoli M, Noteborn M, Backendorf C, Zimmerman RM (2009) Family at last: highlights of the first international meeting on proteins killing tumour cells. Cell Death Differ 16(1):184–186. https://doi.org/10.1038/cdd.2008.164$$v16$$y2009
000182136 999C5 $$1R Burikhanov$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.celrep.2016.12.051$$p508 -$$tCell Rep$$uBurikhanov R, Hebbar N, Noothi SK, Shukla N, Sledziona J, Araujo N, Kudrimoti M, Wang QJ, Watt DS, Welch DR, Maranchie J, Harada A, Rangnekar VM (2017) Chloroquine-inducible Par-4 secretion is essential for tumor cell apoptosis and inhibition of metastasis. Cell Rep 18(2):508–519. https://doi.org/10.1016/j.celrep.2016.12.051$$v18$$y2017
000182136 999C5 $$1L Cardoso Alves$$2Crossref$$9-- missing cx lookup --$$a10.1111/febs.15637$$p5530 -$$tFEBS J$$uCardoso Alves L, Corazza N, Micheau O, Krebs P (2021) The multifaceted role of TRAIL signalling in cancer and immunity. FEBS J 288(19):5530–5554. https://doi.org/10.1111/febs.15637$$v288$$y2021
000182136 999C5 $$1L Chen$$2Crossref$$uChen L, Li C, Xie Y, Ye J, Cao J (2016) [Downregulation of proteinase activated receptor 4 inhibits migration of SW620 human colorectal cancer cells]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi Chin J Cell Mol Immunol 32(5):609–614$$y2016
000182136 999C5 $$1M de Virgilio$$2Crossref$$9-- missing cx lookup --$$a10.3390/toxins2112699$$p2699 -$$tToxins$$ude Virgilio M, Lombardi A, Caliandro R, Fabbrini MS (2010) Ribosome-inactivating proteins: from plant defense to tumor attack. Toxins 2(11):2699–2737. https://doi.org/10.3390/toxins2112699$$v2$$y2010
000182136 999C5 $$1R Georges$$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1582-4934.2011.01289.x$$p260 -$$tJ Cell Mol Med$$uGeorges R, Bergmann F, Hamdi H, Zepp M, Eyol E, Hielscher T, Berger MR, Adwan H (2012) Sequential biphasic changes in claudin1 and claudin4 expression are correlated to colorectal cancer progression and liver metastasis. J Cell Mol Med 16(2):260–272. https://doi.org/10.1111/j.1582-4934.2011.01289.x$$v16$$y2012
000182136 999C5 $$1A Goswami$$2Crossref$$9-- missing cx lookup --$$a10.1158/0008-5472.CAN-05-4458$$p2889 -$$tCan Res$$uGoswami A, Ranganathan P, Rangnekar VM (2006) The phosphoinositide 3-kinase/Akt1/Par-4 axis: a cancer-selective therapeutic target. Can Res 66(6):2889–2892. https://doi.org/10.1158/0008-5472.CAN-05-4458$$v66$$y2006
000182136 999C5 $$1JD Greenlee$$2Crossref$$9-- missing cx lookup --$$a10.7554/eLife.67750$$tElife$$uGreenlee JD, Lopez-Cavestany M, Ortiz-Otero N, Liu K, Subramanian T, Cagir B, King MR (2021) Oxaliplatin resistance in colorectal cancer enhances TRAIL sensitivity via death receptor 4 upregulation and lipid raft localization. Elife. https://doi.org/10.7554/eLife.67750$$y2021
000182136 999C5 $$1S Grimm$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.molmed.2009.12.002$$p88 -$$tTrends Mol Med$$uGrimm S, Noteborn M (2010) Anticancer genes: inducers of tumour-specific cell death signalling. Trends Mol Med 16(2):88–96. https://doi.org/10.1016/j.molmed.2009.12.002$$v16$$y2010
000182136 999C5 $$1JE Guikema$$2Crossref$$9-- missing cx lookup --$$a10.1080/14728222.2017.1349754$$p767 -$$tExpert Opin Ther Targets$$uGuikema JE, Amiot M, Eldering E (2017) Exploiting the pro-apoptotic function of NOXA as a therapeutic modality in cancer. Expert Opin Ther Targets 21(8):767–779. https://doi.org/10.1080/14728222.2017.1349754$$v21$$y2017
000182136 999C5 $$1H Guo$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-019-45209-9$$p8755 -$$tSci Rep$$uGuo H, Treude F, Kramer OH, Luscher B, Hartkamp J (2019) PAR-4 overcomes chemo-resistance in breast cancer cells by antagonizing cIAP1. Sci Rep 9(1):8755. https://doi.org/10.1038/s41598-019-45209-9$$v9$$y2019
000182136 999C5 $$1C Horrix$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00018-010-0524-2$$p1269 -$$tCell Mol Life Sci CMLS$$uHorrix C, Raviv Z, Flescher E, Voss C, Berger MR (2011) Plant ribosome-inactivating proteins type II induce the unfolded protein response in human cancer cells. Cell Mol Life Sci CMLS 68(7):1269–1281. https://doi.org/10.1007/s00018-010-0524-2$$v68$$y2011
000182136 999C5 $$1AK Jansson$$2Crossref$$9-- missing cx lookup --$$a10.1038/sj.onc.1206655$$p4675 -$$tOncogene$$uJansson AK, Emterling AM, Arbman G, Sun XF (2003) Noxa in colorectal cancer: a study on DNA, mRNA and protein expression. Oncogene 22(30):4675–4678. https://doi.org/10.1038/sj.onc.1206655$$v22$$y2003
000182136 999C5 $$1S Jeong$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.canlet.2019.01.011$$p12 -$$tCancer Lett$$uJeong S, Yun HK, Jeong YA, Jo MJ, Kang SH, Kim JL, Kim DY, Park SH, Kim BR, Na YJ, Lee SI, Kim HD, Kim DH, Oh SC, Lee DH (2019a) Cannabidiol-induced apoptosis is mediated by activation of Noxa in human colorectal cancer cells. Cancer Lett 447:12–23. https://doi.org/10.1016/j.canlet.2019.01.011$$v447$$y2019
000182136 999C5 $$1YA Jeong$$2Crossref$$9-- missing cx lookup --$$a10.3390/nu11092026$$tNutrients$$uJeong YA, Kim BR, Kim DY, Jeong S, Na YJ, Kim JL, Yun HK, Kim BG, Park SH, Jo MJ, Lee SI, Han BC, Lee DH, Oh SC (2019b) Korean red ginseng extract increases apoptosis by activation of the Noxa pathway in colorectal cancer. Nutrients. https://doi.org/10.3390/nu11092026$$y2019
000182136 999C5 $$1HR Jin$$2Crossref$$9-- missing cx lookup --$$a10.1038/cddis.2014.169$$tCell Death Dis$$uJin HR, Liao Y, Li X, Zhang Z, Zhao J, Wang CZ, Huang WH, Li SP, Yuan CS, Du W (2014) Anticancer compound Oplopantriol A kills cancer cells through inducing ER stress and BH3 proteins Bim and Noxa. Cell Death Dis 5:e1190. https://doi.org/10.1038/cddis.2014.169$$v5$$y2014
000182136 999C5 $$1G Karbon$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41419-021-04415-y$$p1151 -$$tCell Death Dis$$uKarbon G, Haschka MD, Hackl H, Soratroi C, Rocamora-Reverte L, Parson W, Fiegl H, Villunger A (2021) The BH3-only protein NOXA serves as an independent predictor of breast cancer patient survival and defines susceptibility to microtubule targeting agents. Cell Death Dis 12(12):1151. https://doi.org/10.1038/s41419-021-04415-y$$v12$$y2021
000182136 999C5 $$1CL Kline$$2Crossref$$9-- missing cx lookup --$$a10.1007/s10495-011-0648-3$$p1285 -$$tApoptosis Int J Program Cell Death$$uKline CL, Irby RB (2011) The pro-apoptotic protein Prostate Apoptosis Response Protein-4 (Par-4) can be activated in colon cancer cells by treatment with Src inhibitor and 5-FU. Apoptosis Int J Program Cell Death 16(12):1285–1294. https://doi.org/10.1007/s10495-011-0648-3$$v16$$y2011
000182136 999C5 $$1V Kosmidou$$2Crossref$$9-- missing cx lookup --$$a10.1111/eci.13353$$tEur J Clin Invest$$uKosmidou V, Vlassi M, Anagiotos K, Raftopoulou S, Kalogerakou E, Skarmalioraki S, Aggeli C, Choreftaki T, Zografos G, Pintzas A (2021) Noxa upregulation and 5-gene apoptotic biomarker panel in colorectal cancer. Eur J Clin Invest 51(1):e13353. https://doi.org/10.1111/eci.13353$$v51$$y2021
000182136 999C5 $$1A Murtaja$$2Crossref$$9-- missing cx lookup --$$a10.3892/ol.2017.7526$$p1441 -$$tOncol Lett$$uMurtaja A, Eyol E, Xiaoqi J, Berger MR, Adwan H (2018) The ribosome inhibiting protein riproximin shows antineoplastic activity in experimental pancreatic cancer liver metastasis. Oncol Lett 15(2):1441–1448. https://doi.org/10.3892/ol.2017.7526$$v15$$y2018
000182136 999C5 $$1K Okumura$$2Crossref$$9-- missing cx lookup --$$a10.1158/1078-0432.CCR-08-1665$$p8132 -$$tClin Cancer Res$$uOkumura K, Huang S, Sinicrope FA (2008) Induction of Noxa sensitizes human colorectal cancer cells expressing Mcl-1 to the small-molecule Bcl-2/Bcl-xL inhibitor, ABT-737. Clin Cancer Res 14(24):8132–8142. https://doi.org/10.1158/1078-0432.CCR-08-1665$$v14$$y2008
000182136 999C5 $$1A Pervaiz$$2Crossref$$9-- missing cx lookup --$$a10.3892/ijo.2015.3073$$p981 -$$tInt J Oncol$$uPervaiz A, Adwan H, Berger MR (2015a) Riproximin: a type II ribosome inactivating protein with anti-neoplastic potential induces IL24/MDA-7 and GADD genes in colorectal cancer cell lines. Int J Oncol 47(3):981–990. https://doi.org/10.3892/ijo.2015.3073$$v47$$y2015
000182136 999C5 $$1A Pervaiz$$2Crossref$$9-- missing cx lookup --$$a10.1007/s12032-015-0607-x$$p158 -$$tMed Oncol$$uPervaiz A, Ansari S, Berger MR, Adwan H (2015b) CCR5 blockage by maraviroc induces cytotoxic and apoptotic effects in colorectal cancer cells. Med Oncol 32(5):158. https://doi.org/10.1007/s12032-015-0607-x$$v32$$y2015
000182136 999C5 $$1A Pervaiz$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00432-015-2013-3$$p135 -$$tJ Cancer Res Clin Oncol$$uPervaiz A, Zepp M, Adwan H, Berger MR (2016) Riproximin modulates multiple signalling cascades leading to cytostatic and apoptotic effects in human breast cancer cells. J Cancer Res Clin Oncol 142(1):135–147. https://doi.org/10.1007/s00432-015-2013-3$$v142$$y2016
000182136 999C5 $$1MN Sagini$$2Crossref$$9-- missing cx lookup --$$a10.3389/fphar.2020.549804$$tFront Pharmacol$$uSagini MN, Klika KD, Orry A, Zepp M, Mutiso J, Berger MR (2020) Riproximin exhibits diversity in sugar binding, and modulates some metastasis-related proteins with lectin like properties in pancreatic ductal adenocarcinoma. Front Pharmacol 11:549804. https://doi.org/10.3389/fphar.2020.549804$$v11$$y2020
000182136 999C5 $$1G Saturno$$2Crossref$$9-- missing cx lookup --$$a10.18632/oncotarget.1162$$p1185 -$$tOncotarget$$uSaturno G, Valenti M, De Haven BA, Thomas GV, Eccles S, Clarke PA, Workman P (2013) Combining trail with PI3 kinase or HSP90 inhibitors enhances apoptosis in colorectal cancer cells via suppression of survival signalling. Oncotarget 4(8):1185–1198. https://doi.org/10.18632/oncotarget.1162$$v4$$y2013
000182136 999C5 $$1V Schirrmacher$$2Crossref$$9-- missing cx lookup --$$a10.3892/ijo.2018.4661$$p407 -$$tInt J Oncol$$uSchirrmacher V (2019) From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment (review). Int J Oncol 54(2):407–419. https://doi.org/10.3892/ijo.2018.4661$$v54$$y2019
000182136 999C5 $$1C Sheridan$$2Crossref$$9-- missing cx lookup --$$a10.1038/onc.2010.380$$p6428 -$$tOncogene$$uSheridan C, Brumatti G, Elgendy M, Brunet M, Martin SJ (2010) An ERK-dependent pathway to Noxa expression regulates apoptosis by platinum-based chemotherapeutic drugs. Oncogene 29(49):6428–6441. https://doi.org/10.1038/onc.2010.380$$v29$$y2010
000182136 999C5 $$1T Shrestha-Bhattarai$$2Crossref$$9-- missing cx lookup --$$a10.1038/onc.2010.141$$p3873 -$$tOncogene$$uShrestha-Bhattarai T, Rangnekar VM (2010) Cancer-selective apoptotic effects of extracellular and intracellular Par-4. Oncogene 29(27):3873–3880. https://doi.org/10.1038/onc.2010.141$$v29$$y2010
000182136 999C5 $$1M Snajdauf$$2Crossref$$9-- missing cx lookup --$$a10.3389/fmolb.2021.628332$$tFront Mol Biosci$$uSnajdauf M, Havlova K, Vachtenheim J Jr, Ozaniak A, Lischke R, Bartunkova J, Smrz D, Strizova Z (2021) The TRAIL in the treatment of human cancer: an update on clinical trials. Front Mol Biosci 8:628332. https://doi.org/10.3389/fmolb.2021.628332$$v8$$y2021
000182136 999C5 $$1J Strater$$2Crossref$$uStrater J, Hinz U, Walczak H, Mechtersheimer G, Koretz K, Herfarth C, Moller P, Lehnert T (2002) Expression of TRAIL and TRAIL receptors in colon carcinoma: TRAIL-R1 is an independent prognostic parameter. Clin Cancer Res 8(12):3734–3740$$y2002
000182136 999C5 $$1S Suzuki$$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1349-7006.2009.01096.x$$p759 -$$tCancer Sci$$uSuzuki S, Nakasato M, Shibue T, Koshima I, Taniguchi T (2009) Therapeutic potential of proapoptotic molecule Noxa in the selective elimination of tumor cells. Cancer Sci 100(4):759–769. https://doi.org/10.1111/j.1349-7006.2009.01096.x$$v100$$y2009
000182136 999C5 $$1J Tan$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.toxlet.2013.10.008$$p7 -$$tToxicol Lett$$uTan J, You Y, Xu T, Yu P, Wu D, Deng H, Zhang Y, Bie P (2014) Par-4 downregulation confers cisplatin resistance in pancreatic cancer cells via PI3K/Akt pathway-dependent EMT. Toxicol Lett 224(1):7–15. https://doi.org/10.1016/j.toxlet.2013.10.008$$v224$$y2014
000182136 999C5 $$1F Thayyullathil$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.bbamcr.2020.118692$$p118692 -$$tBiochim Biophys Acta Mol Cell Res 1867$$uThayyullathil F, Cheratta AR, Pallichankandy S, Subburayan K, Tariq S, Rangnekar VM, Galadari S (2020) Par-4 regulates autophagic cell death in human cancer cells via upregulating p53 and BNIP3. Biochim Biophys Acta Mol Cell Res 1867 7:118692. https://doi.org/10.1016/j.bbamcr.2020.118692$$v7$$y2020
000182136 999C5 $$1C Voss$$2Crossref$$9-- missing cx lookup --$$a10.1096/fj.05-5231fje$$p1194 -$$tFASEB J$$uVoss C, Eyol E, Frank M, von der Lieth CW, Berger MR (2006a) Identification and characterization of riproximin, a new type II ribosome-inactivating protein with antineoplastic activity from Ximenia americana. FASEB J 20(8):1194–1196. https://doi.org/10.1096/fj.05-5231fje$$v20$$y2006
000182136 999C5 $$1C Voss$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.taap.2005.05.016$$p177 -$$tToxicol Appl Pharmacol$$uVoss C, Eyol E, Berger MR (2006b) Identification of potent anticancer activity in Ximenia americana aqueous extracts used by African traditional medicine. Toxicol Appl Pharmacol 211(3):177–187. https://doi.org/10.1016/j.taap.2005.05.016$$v211$$y2006
000182136 999C5 $$1BD Wang$$2Crossref$$9-- missing cx lookup --$$a10.1186/1476-4598-9-98$$p98 -$$tMol Cancer$$uWang BD, Kline CL, Pastor DM, Olson TL, Frank B, Luu T, Sharma AK, Robertson G, Weirauch MT, Patierno SR, Stuart JM, Irby RB, Lee NH (2010) Prostate apoptosis response protein 4 sensitizes human colon cancer cells to chemotherapeutic 5-FU through mediation of an NF kappaB and microRNA network. Mol Cancer 9:98. https://doi.org/10.1186/1476-4598-9-98$$v9$$y2010
000182136 999C5 $$1LS Wu$$2Crossref$$9-- missing cx lookup --$$a10.1177/0300060518820785$$p962 -$$tJ Int Med Res$$uWu LS, Wang XW, He W, Ma XT, Wang HY, Han M, Li BH (2019) TRAIL inhibits platelet-induced colorectal cancer cell invasion. J Int Med Res 47(2):962–972. https://doi.org/10.1177/0300060518820785$$v47$$y2019
000182136 999C5 $$1G Yu$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0122678$$tPLoS ONE$$uYu G, Jiang P, Xiang Y, Zhang Y, Zhu Z, Zhang C, Lee S, Lee W, Zhang Y (2015) Increased expression of protease-activated receptor 4 and Trefoil factor 2 in human colorectal cancer. PLoS ONE 10(4):e0122678. https://doi.org/10.1371/journal.pone.0122678$$v10$$y2015
000182136 999C5 $$1H Zhang$$2Crossref$$9-- missing cx lookup --$$a10.3892/ol.2018.9407$$p5745 -$$tOncol Lett$$uZhang H, Jiang P, Zhang C, Lee S, Wang W, Zou H (2018) PAR-4 overexpression promotes colorectal cancer cell proliferation and migration. Oncol Lett 16(5):5745–5752. https://doi.org/10.3892/ol.2018.9407$$v16$$y2018
000182136 999C5 $$1Q Zhao$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.phymed.2020.153306$$tPhytomed Int J Phytother Phytopharmacol$$uZhao Q, Zhong J, Bi Y, Liu Y, Liu Y, Guo J, Pan L, Tan Y, Yu X (2020) Gambogenic acid induces Noxa-mediated apoptosis in colorectal cancer through ROS-dependent activation of IRE1alpha/JNK. Phytomed Int J Phytother Phytopharmacol 78:153306. https://doi.org/10.1016/j.phymed.2020.153306$$v78$$y2020
000182136 999C5 $$1Q Zhao$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.phymed.2021.153723$$tPhytomed Int J Phytother Phytopharmacol$$uZhao Q, Cheng X, Yu W, Bi Y, Guo J, Ma Q, Gong Y, He L, Yu X (2021) Pristimerin induces apoptosis and tumor inhibition of oral squamous cell carcinoma through activating ROS-dependent ER stress/Noxa pathway. Phytomed Int J Phytother Phytopharmacol 92:153723. https://doi.org/10.1016/j.phymed.2021.153723$$v92$$y2021
000182136 999C5 $$1MF Ziauddin$$2Crossref$$9-- missing cx lookup --$$a10.1038/gt.2010.5$$p550 -$$tGene Ther$$uZiauddin MF, Guo ZS, O’Malley ME, Austin F, Popovic PJ, Kavanagh MA, Li J, Sathaiah M, Thirunavukarasu P, Fang B, Lee YJ, Bartlett DL (2010) TRAIL gene-armed oncolytic poxvirus and oxaliplatin can work synergistically against colorectal cancer. Gene Ther 17(4):550–559. https://doi.org/10.1038/gt.2010.5$$v17$$y2010