Home > Publications database > Expression profiling of anticancer genes in colorectal cancer patients and their in vitro induction by riproximin, a ribosomal inactivating plant protein. > print |
001 | 182136 | ||
005 | 20240918112025.0 | ||
024 | 7 | _ | |a 10.1007/s00432-022-04410-6 |2 doi |
024 | 7 | _ | |a pmid:36251065 |2 pmid |
024 | 7 | _ | |a 0084-5353 |2 ISSN |
024 | 7 | _ | |a 0171-5216 |2 ISSN |
024 | 7 | _ | |a 0943-9382 |2 ISSN |
024 | 7 | _ | |a 1432-1335 |2 ISSN |
024 | 7 | _ | |a altmetric:137318997 |2 altmetric |
037 | _ | _ | |a DKFZ-2022-02453 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Pervaiz, Asim |0 P:(DE-He78)17064a887f14c1cee3ae16af3cf73314 |b 0 |e First author |
245 | _ | _ | |a Expression profiling of anticancer genes in colorectal cancer patients and their in vitro induction by riproximin, a ribosomal inactivating plant protein. |
260 | _ | _ | |a Berlin |c 2023 |b Springer |
264 | _ | 1 | |3 online |2 Crossref |b Springer Science and Business Media LLC |c 2022-10-17 |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1726651200_14745 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a #EA:G401#LA:G401 / 2023 Jul;149(8):4825-4837 |
520 | _ | _ | |a Ectopic expression of anticancer genes (ACGs) imposes antineoplastic effects on transformed cells. Clinically, reduced expression of these genes has been linked with poor prognosis, metastasis and chemo/radiotherapy resistance in cancers. Identifying expression pattern of ACGs is crucial to establish their prognostic and therapeutic relevance in colorectal cancer (CRC). In addition to the clinical perspective, naturally occurring compounds can be explored in parallel for inducing ACGs to achieve cancer cell-specific death.Expression profiles of three ACGs (NOXA, PAR-4, TRAIL) were identified via real-time PCR in CRC clinical isolates. Time lapse-based expression modifications in ACGs were studied in a CRC liver metastasis animal model using microarray methodology. Effects of a purified plant protein (riproximin) on selected ACGs were identified in three primary and metastatic CRC cell lines by real-time PCR. Lastly, importance of the ACGs in a cellular environment was highlighted via bioinformatic analysis.ACGs (except NOXA) were persistently downregulated in clinical isolates when comparing the overall mean expression values with normal mucosa levels. In vivo studies showed a prominent inhibition of NOXA and PAR-4 genes in implanted CRC cells during rat liver colonization. TRAIL showed deviation from this theme while showing marked induction during the early period of liver colonization (days 3 and 6 after CRC cell implantation). Riproximin exhibited substantial potential of inducing ACGs at transcriptome levels in selected CRC cell lines. Bioinformatic analysis showed that vital molecular/functional aspects of a cell are associated with the presence of ACGs.ACGs are downregulated in primary and metastatic phase of CRC. Riproximin effectively induces ACGs in CRC cells and can be exploited for clinical investigations over time. |
536 | _ | _ | |a 311 - Zellbiologie und Tumorbiologie (POF4-311) |0 G:(DE-HGF)POF4-311 |c POF4-311 |f POF IV |x 0 |
542 | _ | _ | |i 2022-10-17 |2 Crossref |u https://www.springer.com/tdm |
542 | _ | _ | |i 2022-10-17 |2 Crossref |u https://www.springer.com/tdm |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a Anticancer genes |2 Other |
650 | _ | 7 | |a Colorectal cancer |2 Other |
650 | _ | 7 | |a Expression patterns |2 Other |
650 | _ | 7 | |a Inducing agent/protein |2 Other |
650 | _ | 7 | |a Riproximin |2 Other |
700 | 1 | _ | |a Saleem, Talha |b 1 |
700 | 1 | _ | |a Kanwal, Kinzah |b 2 |
700 | 1 | _ | |a Raza, Syed Mohsin |b 3 |
700 | 1 | _ | |a Iqbal, Sana |b 4 |
700 | 1 | _ | |a Zepp, Michael |0 P:(DE-He78)8da28eac875d8c53905ac3f4393784b8 |b 5 |
700 | 1 | _ | |a Georges, Rania |0 P:(DE-He78)c5c6c8e77d4534ba39f5afec86a3a23a |b 6 |
700 | 1 | _ | |a Berger, Martin |0 P:(DE-He78)7e60033e3eaaebb9ba30c905ade4a676 |b 7 |e Last author |
773 | 1 | 8 | |a 10.1007/s00432-022-04410-6 |b Springer Science and Business Media LLC |d 2022-10-17 |3 journal-article |2 Crossref |t Journal of Cancer Research and Clinical Oncology |y 2022 |x 0171-5216 |
773 | _ | _ | |a 10.1007/s00432-022-04410-6 |0 PERI:(DE-600)1459285-X |n 8 |p 4825-4837 |t Journal of cancer research and clinical oncology |v 149 |y 2023 |x 0171-5216 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:182136 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)17064a887f14c1cee3ae16af3cf73314 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 5 |6 P:(DE-He78)8da28eac875d8c53905ac3f4393784b8 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 6 |6 P:(DE-He78)c5c6c8e77d4534ba39f5afec86a3a23a |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 7 |6 P:(DE-He78)7e60033e3eaaebb9ba30c905ade4a676 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-311 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Zellbiologie und Tumorbiologie |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-21 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J CANCER RES CLIN : 2022 |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-21 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-21 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-10-21 |
920 | 2 | _ | |0 I:(DE-He78)G401-20160331 |k G401 |l Molekulare Toxikologie und Chemotherapie |x 0 |
920 | 1 | _ | |0 I:(DE-He78)G401-20160331 |k G401 |l Molekulare Toxikologie und Chemotherapie |x 0 |
920 | 0 | _ | |0 I:(DE-He78)G401-20160331 |k G401 |l Molekulare Toxikologie und Chemotherapie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)G401-20160331 |
980 | _ | _ | |a UNRESTRICTED |
999 | C | 5 | |a 10.1038/onc.2014.93 |9 -- missing cx lookup -- |1 G AbuAli |p 1718 - |2 Crossref |u AbuAli G, Chaisaklert W, Stelloo E, Pazarentzos E, Hwang MS, Qize D, Harding SV, Al-Rubaish A, Alzahrani AJ, Al-Ali A, Sanders TA, Aboagye EO, Grimm S (2015) The anticancer gene ORCTL3 targets stearoyl-CoA desaturase-1 for tumour-specific apoptosis. Oncogene 34(13):1718–1728. https://doi.org/10.1038/onc.2014.93 |t Oncogene |v 34 |y 2015 |
999 | C | 5 | |a 10.1016/j.biotechadv.2014.03.008 |9 -- missing cx lookup -- |1 H Adwan |p 1077 - |2 Crossref |u Adwan H, Bayer H, Pervaiz A, Sagini M, Berger MR (2014a) Riproximin is a recently discovered type II ribosome inactivating protein with potential for treating cancer. Biotechnol Adv 32(6):1077–1090. https://doi.org/10.1016/j.biotechadv.2014.03.008 |t Biotechnol Adv |v 32 |y 2014 |
999 | C | 5 | |a 10.4161/cbt.29503 |9 -- missing cx lookup -- |1 H Adwan |p 1185 - |2 Crossref |u Adwan H, Murtaja A, Kadhim Al-Taee K, Pervaiz A, Hielscher T, Berger MR (2014b) Riproximin’s activity depends on gene expression and sensitizes PDAC cells to TRAIL. Cancer Biol Ther 15(9):1185–1197. https://doi.org/10.4161/cbt.29503 |t Cancer Biol Ther |v 15 |y 2014 |
999 | C | 5 | |a 10.1016/j.ccr.2013.05.007 |9 -- missing cx lookup -- |1 JV Alvarez |p 30 - |2 Crossref |u Alvarez JV, Pan TC, Ruth J, Feng Y, Zhou A, Pant D, Grimley JS, Wandless TJ, Demichele A, Investigators IST, Chodosh LA (2013) Par-4 downregulation promotes breast cancer recurrence by preventing multinucleation following targeted therapy. Cancer Cell 24(1):30–44. https://doi.org/10.1016/j.ccr.2013.05.007 |t Cancer Cell |v 24 |y 2013 |
999 | C | 5 | |a 10.1016/j.pep.2011.11.018 |9 -- missing cx lookup -- |1 H Bayer |p 97 - |2 Crossref |u Bayer H, Ey N, Wattenberg A, Voss C, Berger MR (2012a) Purification and characterization of riproximin from Ximenia americana fruit kernels. Protein Expr Purif 82(1):97–105. https://doi.org/10.1016/j.pep.2011.11.018 |t Protein Expr Purif |v 82 |y 2012 |
999 | C | 5 | |a 10.1074/jbc.M112.368548 |9 -- missing cx lookup -- |1 H Bayer |p 35873 - |2 Crossref |u Bayer H, Essig K, Stanzel S, Frank M, Gildersleeve JC, Berger MR, Voss C (2012b) Evaluation of riproximin binding properties reveals a novel mechanism for cellular targeting. J Biol Chem 287(43):35873–35886. https://doi.org/10.1074/jbc.M112.368548 |t J Biol Chem |v 287 |y 2012 |
999 | C | 5 | |a 10.1039/c7nr01469d |9 -- missing cx lookup -- |1 H Belkahla |p 5755 - |2 Crossref |u Belkahla H, Herlem G, Picaud F, Gharbi T, Hemadi M, Ammar S, Micheau O (2017) TRAIL-NP hybrids for cancer therapy: a review. Nanoscale 9(18):5755–5768. https://doi.org/10.1039/c7nr01469d |t Nanoscale |v 9 |y 2017 |
999 | C | 5 | |a 10.3390/molecules21121627 |1 A Bolognesi |9 -- missing cx lookup -- |2 Crossref |u Bolognesi A, Bortolotti M, Maiello S, Battelli MG, Polito L (2016) Ribosome-inactivating proteins from plants: a historical overview. Molecules. https://doi.org/10.3390/molecules21121627 |t Molecules |y 2016 |
999 | C | 5 | |a 10.1038/cdd.2008.164 |9 -- missing cx lookup -- |1 P Bruno |p 184 - |2 Crossref |u Bruno P, Brinkmann CR, Boulanger MC, Flinterman M, Klanrit P, Landry MC, Portsmouth D, Borst J, Tavassoli M, Noteborn M, Backendorf C, Zimmerman RM (2009) Family at last: highlights of the first international meeting on proteins killing tumour cells. Cell Death Differ 16(1):184–186. https://doi.org/10.1038/cdd.2008.164 |t Cell Death Differ |v 16 |y 2009 |
999 | C | 5 | |a 10.1016/j.celrep.2016.12.051 |9 -- missing cx lookup -- |1 R Burikhanov |p 508 - |2 Crossref |u Burikhanov R, Hebbar N, Noothi SK, Shukla N, Sledziona J, Araujo N, Kudrimoti M, Wang QJ, Watt DS, Welch DR, Maranchie J, Harada A, Rangnekar VM (2017) Chloroquine-inducible Par-4 secretion is essential for tumor cell apoptosis and inhibition of metastasis. Cell Rep 18(2):508–519. https://doi.org/10.1016/j.celrep.2016.12.051 |t Cell Rep |v 18 |y 2017 |
999 | C | 5 | |a 10.1111/febs.15637 |9 -- missing cx lookup -- |1 L Cardoso Alves |p 5530 - |2 Crossref |u Cardoso Alves L, Corazza N, Micheau O, Krebs P (2021) The multifaceted role of TRAIL signalling in cancer and immunity. FEBS J 288(19):5530–5554. https://doi.org/10.1111/febs.15637 |t FEBS J |v 288 |y 2021 |
999 | C | 5 | |1 L Chen |y 2016 |2 Crossref |u Chen L, Li C, Xie Y, Ye J, Cao J (2016) [Downregulation of proteinase activated receptor 4 inhibits migration of SW620 human colorectal cancer cells]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi Chin J Cell Mol Immunol 32(5):609–614 |
999 | C | 5 | |a 10.3390/toxins2112699 |9 -- missing cx lookup -- |1 M de Virgilio |p 2699 - |2 Crossref |u de Virgilio M, Lombardi A, Caliandro R, Fabbrini MS (2010) Ribosome-inactivating proteins: from plant defense to tumor attack. Toxins 2(11):2699–2737. https://doi.org/10.3390/toxins2112699 |t Toxins |v 2 |y 2010 |
999 | C | 5 | |a 10.1111/j.1582-4934.2011.01289.x |9 -- missing cx lookup -- |1 R Georges |p 260 - |2 Crossref |u Georges R, Bergmann F, Hamdi H, Zepp M, Eyol E, Hielscher T, Berger MR, Adwan H (2012) Sequential biphasic changes in claudin1 and claudin4 expression are correlated to colorectal cancer progression and liver metastasis. J Cell Mol Med 16(2):260–272. https://doi.org/10.1111/j.1582-4934.2011.01289.x |t J Cell Mol Med |v 16 |y 2012 |
999 | C | 5 | |a 10.1158/0008-5472.CAN-05-4458 |9 -- missing cx lookup -- |1 A Goswami |p 2889 - |2 Crossref |u Goswami A, Ranganathan P, Rangnekar VM (2006) The phosphoinositide 3-kinase/Akt1/Par-4 axis: a cancer-selective therapeutic target. Can Res 66(6):2889–2892. https://doi.org/10.1158/0008-5472.CAN-05-4458 |t Can Res |v 66 |y 2006 |
999 | C | 5 | |a 10.7554/eLife.67750 |1 JD Greenlee |9 -- missing cx lookup -- |2 Crossref |u Greenlee JD, Lopez-Cavestany M, Ortiz-Otero N, Liu K, Subramanian T, Cagir B, King MR (2021) Oxaliplatin resistance in colorectal cancer enhances TRAIL sensitivity via death receptor 4 upregulation and lipid raft localization. Elife. https://doi.org/10.7554/eLife.67750 |t Elife |y 2021 |
999 | C | 5 | |a 10.1016/j.molmed.2009.12.002 |9 -- missing cx lookup -- |1 S Grimm |p 88 - |2 Crossref |u Grimm S, Noteborn M (2010) Anticancer genes: inducers of tumour-specific cell death signalling. Trends Mol Med 16(2):88–96. https://doi.org/10.1016/j.molmed.2009.12.002 |t Trends Mol Med |v 16 |y 2010 |
999 | C | 5 | |a 10.1080/14728222.2017.1349754 |9 -- missing cx lookup -- |1 JE Guikema |p 767 - |2 Crossref |u Guikema JE, Amiot M, Eldering E (2017) Exploiting the pro-apoptotic function of NOXA as a therapeutic modality in cancer. Expert Opin Ther Targets 21(8):767–779. https://doi.org/10.1080/14728222.2017.1349754 |t Expert Opin Ther Targets |v 21 |y 2017 |
999 | C | 5 | |a 10.1038/s41598-019-45209-9 |9 -- missing cx lookup -- |1 H Guo |p 8755 - |2 Crossref |u Guo H, Treude F, Kramer OH, Luscher B, Hartkamp J (2019) PAR-4 overcomes chemo-resistance in breast cancer cells by antagonizing cIAP1. Sci Rep 9(1):8755. https://doi.org/10.1038/s41598-019-45209-9 |t Sci Rep |v 9 |y 2019 |
999 | C | 5 | |a 10.1007/s00018-010-0524-2 |9 -- missing cx lookup -- |1 C Horrix |p 1269 - |2 Crossref |u Horrix C, Raviv Z, Flescher E, Voss C, Berger MR (2011) Plant ribosome-inactivating proteins type II induce the unfolded protein response in human cancer cells. Cell Mol Life Sci CMLS 68(7):1269–1281. https://doi.org/10.1007/s00018-010-0524-2 |t Cell Mol Life Sci CMLS |v 68 |y 2011 |
999 | C | 5 | |a 10.1038/sj.onc.1206655 |9 -- missing cx lookup -- |1 AK Jansson |p 4675 - |2 Crossref |u Jansson AK, Emterling AM, Arbman G, Sun XF (2003) Noxa in colorectal cancer: a study on DNA, mRNA and protein expression. Oncogene 22(30):4675–4678. https://doi.org/10.1038/sj.onc.1206655 |t Oncogene |v 22 |y 2003 |
999 | C | 5 | |a 10.1016/j.canlet.2019.01.011 |9 -- missing cx lookup -- |1 S Jeong |p 12 - |2 Crossref |u Jeong S, Yun HK, Jeong YA, Jo MJ, Kang SH, Kim JL, Kim DY, Park SH, Kim BR, Na YJ, Lee SI, Kim HD, Kim DH, Oh SC, Lee DH (2019a) Cannabidiol-induced apoptosis is mediated by activation of Noxa in human colorectal cancer cells. Cancer Lett 447:12–23. https://doi.org/10.1016/j.canlet.2019.01.011 |t Cancer Lett |v 447 |y 2019 |
999 | C | 5 | |a 10.3390/nu11092026 |1 YA Jeong |9 -- missing cx lookup -- |2 Crossref |u Jeong YA, Kim BR, Kim DY, Jeong S, Na YJ, Kim JL, Yun HK, Kim BG, Park SH, Jo MJ, Lee SI, Han BC, Lee DH, Oh SC (2019b) Korean red ginseng extract increases apoptosis by activation of the Noxa pathway in colorectal cancer. Nutrients. https://doi.org/10.3390/nu11092026 |t Nutrients |y 2019 |
999 | C | 5 | |a 10.1038/cddis.2014.169 |1 HR Jin |9 -- missing cx lookup -- |2 Crossref |u Jin HR, Liao Y, Li X, Zhang Z, Zhao J, Wang CZ, Huang WH, Li SP, Yuan CS, Du W (2014) Anticancer compound Oplopantriol A kills cancer cells through inducing ER stress and BH3 proteins Bim and Noxa. Cell Death Dis 5:e1190. https://doi.org/10.1038/cddis.2014.169 |t Cell Death Dis |v 5 |y 2014 |
999 | C | 5 | |a 10.1038/s41419-021-04415-y |9 -- missing cx lookup -- |1 G Karbon |p 1151 - |2 Crossref |u Karbon G, Haschka MD, Hackl H, Soratroi C, Rocamora-Reverte L, Parson W, Fiegl H, Villunger A (2021) The BH3-only protein NOXA serves as an independent predictor of breast cancer patient survival and defines susceptibility to microtubule targeting agents. Cell Death Dis 12(12):1151. https://doi.org/10.1038/s41419-021-04415-y |t Cell Death Dis |v 12 |y 2021 |
999 | C | 5 | |a 10.1007/s10495-011-0648-3 |9 -- missing cx lookup -- |1 CL Kline |p 1285 - |2 Crossref |u Kline CL, Irby RB (2011) The pro-apoptotic protein Prostate Apoptosis Response Protein-4 (Par-4) can be activated in colon cancer cells by treatment with Src inhibitor and 5-FU. Apoptosis Int J Program Cell Death 16(12):1285–1294. https://doi.org/10.1007/s10495-011-0648-3 |t Apoptosis Int J Program Cell Death |v 16 |y 2011 |
999 | C | 5 | |a 10.1111/eci.13353 |1 V Kosmidou |9 -- missing cx lookup -- |2 Crossref |u Kosmidou V, Vlassi M, Anagiotos K, Raftopoulou S, Kalogerakou E, Skarmalioraki S, Aggeli C, Choreftaki T, Zografos G, Pintzas A (2021) Noxa upregulation and 5-gene apoptotic biomarker panel in colorectal cancer. Eur J Clin Invest 51(1):e13353. https://doi.org/10.1111/eci.13353 |t Eur J Clin Invest |v 51 |y 2021 |
999 | C | 5 | |a 10.3892/ol.2017.7526 |9 -- missing cx lookup -- |1 A Murtaja |p 1441 - |2 Crossref |u Murtaja A, Eyol E, Xiaoqi J, Berger MR, Adwan H (2018) The ribosome inhibiting protein riproximin shows antineoplastic activity in experimental pancreatic cancer liver metastasis. Oncol Lett 15(2):1441–1448. https://doi.org/10.3892/ol.2017.7526 |t Oncol Lett |v 15 |y 2018 |
999 | C | 5 | |a 10.1158/1078-0432.CCR-08-1665 |9 -- missing cx lookup -- |1 K Okumura |p 8132 - |2 Crossref |u Okumura K, Huang S, Sinicrope FA (2008) Induction of Noxa sensitizes human colorectal cancer cells expressing Mcl-1 to the small-molecule Bcl-2/Bcl-xL inhibitor, ABT-737. Clin Cancer Res 14(24):8132–8142. https://doi.org/10.1158/1078-0432.CCR-08-1665 |t Clin Cancer Res |v 14 |y 2008 |
999 | C | 5 | |a 10.3892/ijo.2015.3073 |9 -- missing cx lookup -- |1 A Pervaiz |p 981 - |2 Crossref |u Pervaiz A, Adwan H, Berger MR (2015a) Riproximin: a type II ribosome inactivating protein with anti-neoplastic potential induces IL24/MDA-7 and GADD genes in colorectal cancer cell lines. Int J Oncol 47(3):981–990. https://doi.org/10.3892/ijo.2015.3073 |t Int J Oncol |v 47 |y 2015 |
999 | C | 5 | |a 10.1007/s12032-015-0607-x |9 -- missing cx lookup -- |1 A Pervaiz |p 158 - |2 Crossref |u Pervaiz A, Ansari S, Berger MR, Adwan H (2015b) CCR5 blockage by maraviroc induces cytotoxic and apoptotic effects in colorectal cancer cells. Med Oncol 32(5):158. https://doi.org/10.1007/s12032-015-0607-x |t Med Oncol |v 32 |y 2015 |
999 | C | 5 | |a 10.1007/s00432-015-2013-3 |9 -- missing cx lookup -- |1 A Pervaiz |p 135 - |2 Crossref |u Pervaiz A, Zepp M, Adwan H, Berger MR (2016) Riproximin modulates multiple signalling cascades leading to cytostatic and apoptotic effects in human breast cancer cells. J Cancer Res Clin Oncol 142(1):135–147. https://doi.org/10.1007/s00432-015-2013-3 |t J Cancer Res Clin Oncol |v 142 |y 2016 |
999 | C | 5 | |a 10.3389/fphar.2020.549804 |1 MN Sagini |9 -- missing cx lookup -- |2 Crossref |u Sagini MN, Klika KD, Orry A, Zepp M, Mutiso J, Berger MR (2020) Riproximin exhibits diversity in sugar binding, and modulates some metastasis-related proteins with lectin like properties in pancreatic ductal adenocarcinoma. Front Pharmacol 11:549804. https://doi.org/10.3389/fphar.2020.549804 |t Front Pharmacol |v 11 |y 2020 |
999 | C | 5 | |a 10.18632/oncotarget.1162 |9 -- missing cx lookup -- |1 G Saturno |p 1185 - |2 Crossref |u Saturno G, Valenti M, De Haven BA, Thomas GV, Eccles S, Clarke PA, Workman P (2013) Combining trail with PI3 kinase or HSP90 inhibitors enhances apoptosis in colorectal cancer cells via suppression of survival signalling. Oncotarget 4(8):1185–1198. https://doi.org/10.18632/oncotarget.1162 |t Oncotarget |v 4 |y 2013 |
999 | C | 5 | |a 10.3892/ijo.2018.4661 |9 -- missing cx lookup -- |1 V Schirrmacher |p 407 - |2 Crossref |u Schirrmacher V (2019) From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment (review). Int J Oncol 54(2):407–419. https://doi.org/10.3892/ijo.2018.4661 |t Int J Oncol |v 54 |y 2019 |
999 | C | 5 | |a 10.1038/onc.2010.380 |9 -- missing cx lookup -- |1 C Sheridan |p 6428 - |2 Crossref |u Sheridan C, Brumatti G, Elgendy M, Brunet M, Martin SJ (2010) An ERK-dependent pathway to Noxa expression regulates apoptosis by platinum-based chemotherapeutic drugs. Oncogene 29(49):6428–6441. https://doi.org/10.1038/onc.2010.380 |t Oncogene |v 29 |y 2010 |
999 | C | 5 | |a 10.1038/onc.2010.141 |9 -- missing cx lookup -- |1 T Shrestha-Bhattarai |p 3873 - |2 Crossref |u Shrestha-Bhattarai T, Rangnekar VM (2010) Cancer-selective apoptotic effects of extracellular and intracellular Par-4. Oncogene 29(27):3873–3880. https://doi.org/10.1038/onc.2010.141 |t Oncogene |v 29 |y 2010 |
999 | C | 5 | |a 10.3389/fmolb.2021.628332 |1 M Snajdauf |9 -- missing cx lookup -- |2 Crossref |u Snajdauf M, Havlova K, Vachtenheim J Jr, Ozaniak A, Lischke R, Bartunkova J, Smrz D, Strizova Z (2021) The TRAIL in the treatment of human cancer: an update on clinical trials. Front Mol Biosci 8:628332. https://doi.org/10.3389/fmolb.2021.628332 |t Front Mol Biosci |v 8 |y 2021 |
999 | C | 5 | |1 J Strater |y 2002 |2 Crossref |u Strater J, Hinz U, Walczak H, Mechtersheimer G, Koretz K, Herfarth C, Moller P, Lehnert T (2002) Expression of TRAIL and TRAIL receptors in colon carcinoma: TRAIL-R1 is an independent prognostic parameter. Clin Cancer Res 8(12):3734–3740 |
999 | C | 5 | |a 10.1111/j.1349-7006.2009.01096.x |9 -- missing cx lookup -- |1 S Suzuki |p 759 - |2 Crossref |u Suzuki S, Nakasato M, Shibue T, Koshima I, Taniguchi T (2009) Therapeutic potential of proapoptotic molecule Noxa in the selective elimination of tumor cells. Cancer Sci 100(4):759–769. https://doi.org/10.1111/j.1349-7006.2009.01096.x |t Cancer Sci |v 100 |y 2009 |
999 | C | 5 | |a 10.1016/j.toxlet.2013.10.008 |9 -- missing cx lookup -- |1 J Tan |p 7 - |2 Crossref |u Tan J, You Y, Xu T, Yu P, Wu D, Deng H, Zhang Y, Bie P (2014) Par-4 downregulation confers cisplatin resistance in pancreatic cancer cells via PI3K/Akt pathway-dependent EMT. Toxicol Lett 224(1):7–15. https://doi.org/10.1016/j.toxlet.2013.10.008 |t Toxicol Lett |v 224 |y 2014 |
999 | C | 5 | |a 10.1016/j.bbamcr.2020.118692 |9 -- missing cx lookup -- |1 F Thayyullathil |p 118692 - |2 Crossref |u Thayyullathil F, Cheratta AR, Pallichankandy S, Subburayan K, Tariq S, Rangnekar VM, Galadari S (2020) Par-4 regulates autophagic cell death in human cancer cells via upregulating p53 and BNIP3. Biochim Biophys Acta Mol Cell Res 1867 7:118692. https://doi.org/10.1016/j.bbamcr.2020.118692 |t Biochim Biophys Acta Mol Cell Res 1867 |v 7 |y 2020 |
999 | C | 5 | |a 10.1096/fj.05-5231fje |9 -- missing cx lookup -- |1 C Voss |p 1194 - |2 Crossref |u Voss C, Eyol E, Frank M, von der Lieth CW, Berger MR (2006a) Identification and characterization of riproximin, a new type II ribosome-inactivating protein with antineoplastic activity from Ximenia americana. FASEB J 20(8):1194–1196. https://doi.org/10.1096/fj.05-5231fje |t FASEB J |v 20 |y 2006 |
999 | C | 5 | |a 10.1016/j.taap.2005.05.016 |9 -- missing cx lookup -- |1 C Voss |p 177 - |2 Crossref |u Voss C, Eyol E, Berger MR (2006b) Identification of potent anticancer activity in Ximenia americana aqueous extracts used by African traditional medicine. Toxicol Appl Pharmacol 211(3):177–187. https://doi.org/10.1016/j.taap.2005.05.016 |t Toxicol Appl Pharmacol |v 211 |y 2006 |
999 | C | 5 | |a 10.1186/1476-4598-9-98 |9 -- missing cx lookup -- |1 BD Wang |p 98 - |2 Crossref |u Wang BD, Kline CL, Pastor DM, Olson TL, Frank B, Luu T, Sharma AK, Robertson G, Weirauch MT, Patierno SR, Stuart JM, Irby RB, Lee NH (2010) Prostate apoptosis response protein 4 sensitizes human colon cancer cells to chemotherapeutic 5-FU through mediation of an NF kappaB and microRNA network. Mol Cancer 9:98. https://doi.org/10.1186/1476-4598-9-98 |t Mol Cancer |v 9 |y 2010 |
999 | C | 5 | |a 10.1177/0300060518820785 |9 -- missing cx lookup -- |1 LS Wu |p 962 - |2 Crossref |u Wu LS, Wang XW, He W, Ma XT, Wang HY, Han M, Li BH (2019) TRAIL inhibits platelet-induced colorectal cancer cell invasion. J Int Med Res 47(2):962–972. https://doi.org/10.1177/0300060518820785 |t J Int Med Res |v 47 |y 2019 |
999 | C | 5 | |a 10.1371/journal.pone.0122678 |1 G Yu |9 -- missing cx lookup -- |2 Crossref |u Yu G, Jiang P, Xiang Y, Zhang Y, Zhu Z, Zhang C, Lee S, Lee W, Zhang Y (2015) Increased expression of protease-activated receptor 4 and Trefoil factor 2 in human colorectal cancer. PLoS ONE 10(4):e0122678. https://doi.org/10.1371/journal.pone.0122678 |t PLoS ONE |v 10 |y 2015 |
999 | C | 5 | |a 10.3892/ol.2018.9407 |9 -- missing cx lookup -- |1 H Zhang |p 5745 - |2 Crossref |u Zhang H, Jiang P, Zhang C, Lee S, Wang W, Zou H (2018) PAR-4 overexpression promotes colorectal cancer cell proliferation and migration. Oncol Lett 16(5):5745–5752. https://doi.org/10.3892/ol.2018.9407 |t Oncol Lett |v 16 |y 2018 |
999 | C | 5 | |a 10.1016/j.phymed.2020.153306 |1 Q Zhao |9 -- missing cx lookup -- |2 Crossref |u Zhao Q, Zhong J, Bi Y, Liu Y, Liu Y, Guo J, Pan L, Tan Y, Yu X (2020) Gambogenic acid induces Noxa-mediated apoptosis in colorectal cancer through ROS-dependent activation of IRE1alpha/JNK. Phytomed Int J Phytother Phytopharmacol 78:153306. https://doi.org/10.1016/j.phymed.2020.153306 |t Phytomed Int J Phytother Phytopharmacol |v 78 |y 2020 |
999 | C | 5 | |a 10.1016/j.phymed.2021.153723 |1 Q Zhao |9 -- missing cx lookup -- |2 Crossref |u Zhao Q, Cheng X, Yu W, Bi Y, Guo J, Ma Q, Gong Y, He L, Yu X (2021) Pristimerin induces apoptosis and tumor inhibition of oral squamous cell carcinoma through activating ROS-dependent ER stress/Noxa pathway. Phytomed Int J Phytother Phytopharmacol 92:153723. https://doi.org/10.1016/j.phymed.2021.153723 |t Phytomed Int J Phytother Phytopharmacol |v 92 |y 2021 |
999 | C | 5 | |a 10.1038/gt.2010.5 |9 -- missing cx lookup -- |1 MF Ziauddin |p 550 - |2 Crossref |u Ziauddin MF, Guo ZS, O’Malley ME, Austin F, Popovic PJ, Kavanagh MA, Li J, Sathaiah M, Thirunavukarasu P, Fang B, Lee YJ, Bartlett DL (2010) TRAIL gene-armed oncolytic poxvirus and oxaliplatin can work synergistically against colorectal cancer. Gene Ther 17(4):550–559. https://doi.org/10.1038/gt.2010.5 |t Gene Ther |v 17 |y 2010 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|