001     182136
005     20240918112025.0
024 7 _ |a 10.1007/s00432-022-04410-6
|2 doi
024 7 _ |a pmid:36251065
|2 pmid
024 7 _ |a 0084-5353
|2 ISSN
024 7 _ |a 0171-5216
|2 ISSN
024 7 _ |a 0943-9382
|2 ISSN
024 7 _ |a 1432-1335
|2 ISSN
024 7 _ |a altmetric:137318997
|2 altmetric
037 _ _ |a DKFZ-2022-02453
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Pervaiz, Asim
|0 P:(DE-He78)17064a887f14c1cee3ae16af3cf73314
|b 0
|e First author
245 _ _ |a Expression profiling of anticancer genes in colorectal cancer patients and their in vitro induction by riproximin, a ribosomal inactivating plant protein.
260 _ _ |a Berlin
|c 2023
|b Springer
264 _ 1 |3 online
|2 Crossref
|b Springer Science and Business Media LLC
|c 2022-10-17
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1726651200_14745
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:G401#LA:G401 / 2023 Jul;149(8):4825-4837
520 _ _ |a Ectopic expression of anticancer genes (ACGs) imposes antineoplastic effects on transformed cells. Clinically, reduced expression of these genes has been linked with poor prognosis, metastasis and chemo/radiotherapy resistance in cancers. Identifying expression pattern of ACGs is crucial to establish their prognostic and therapeutic relevance in colorectal cancer (CRC). In addition to the clinical perspective, naturally occurring compounds can be explored in parallel for inducing ACGs to achieve cancer cell-specific death.Expression profiles of three ACGs (NOXA, PAR-4, TRAIL) were identified via real-time PCR in CRC clinical isolates. Time lapse-based expression modifications in ACGs were studied in a CRC liver metastasis animal model using microarray methodology. Effects of a purified plant protein (riproximin) on selected ACGs were identified in three primary and metastatic CRC cell lines by real-time PCR. Lastly, importance of the ACGs in a cellular environment was highlighted via bioinformatic analysis.ACGs (except NOXA) were persistently downregulated in clinical isolates when comparing the overall mean expression values with normal mucosa levels. In vivo studies showed a prominent inhibition of NOXA and PAR-4 genes in implanted CRC cells during rat liver colonization. TRAIL showed deviation from this theme while showing marked induction during the early period of liver colonization (days 3 and 6 after CRC cell implantation). Riproximin exhibited substantial potential of inducing ACGs at transcriptome levels in selected CRC cell lines. Bioinformatic analysis showed that vital molecular/functional aspects of a cell are associated with the presence of ACGs.ACGs are downregulated in primary and metastatic phase of CRC. Riproximin effectively induces ACGs in CRC cells and can be exploited for clinical investigations over time.
536 _ _ |a 311 - Zellbiologie und Tumorbiologie (POF4-311)
|0 G:(DE-HGF)POF4-311
|c POF4-311
|f POF IV
|x 0
542 _ _ |i 2022-10-17
|2 Crossref
|u https://www.springer.com/tdm
542 _ _ |i 2022-10-17
|2 Crossref
|u https://www.springer.com/tdm
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Anticancer genes
|2 Other
650 _ 7 |a Colorectal cancer
|2 Other
650 _ 7 |a Expression patterns
|2 Other
650 _ 7 |a Inducing agent/protein
|2 Other
650 _ 7 |a Riproximin
|2 Other
700 1 _ |a Saleem, Talha
|b 1
700 1 _ |a Kanwal, Kinzah
|b 2
700 1 _ |a Raza, Syed Mohsin
|b 3
700 1 _ |a Iqbal, Sana
|b 4
700 1 _ |a Zepp, Michael
|0 P:(DE-He78)8da28eac875d8c53905ac3f4393784b8
|b 5
700 1 _ |a Georges, Rania
|0 P:(DE-He78)c5c6c8e77d4534ba39f5afec86a3a23a
|b 6
700 1 _ |a Berger, Martin
|0 P:(DE-He78)7e60033e3eaaebb9ba30c905ade4a676
|b 7
|e Last author
773 1 8 |a 10.1007/s00432-022-04410-6
|b Springer Science and Business Media LLC
|d 2022-10-17
|3 journal-article
|2 Crossref
|t Journal of Cancer Research and Clinical Oncology
|y 2022
|x 0171-5216
773 _ _ |a 10.1007/s00432-022-04410-6
|0 PERI:(DE-600)1459285-X
|n 8
|p 4825-4837
|t Journal of cancer research and clinical oncology
|v 149
|y 2023
|x 0171-5216
909 C O |p VDB
|o oai:inrepo02.dkfz.de:182136
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)17064a887f14c1cee3ae16af3cf73314
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)8da28eac875d8c53905ac3f4393784b8
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)c5c6c8e77d4534ba39f5afec86a3a23a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)7e60033e3eaaebb9ba30c905ade4a676
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-311
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Zellbiologie und Tumorbiologie
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CANCER RES CLIN : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-21
920 2 _ |0 I:(DE-He78)G401-20160331
|k G401
|l Molekulare Toxikologie und Chemotherapie
|x 0
920 1 _ |0 I:(DE-He78)G401-20160331
|k G401
|l Molekulare Toxikologie und Chemotherapie
|x 0
920 0 _ |0 I:(DE-He78)G401-20160331
|k G401
|l Molekulare Toxikologie und Chemotherapie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)G401-20160331
980 _ _ |a UNRESTRICTED
999 C 5 |a 10.1038/onc.2014.93
|9 -- missing cx lookup --
|1 G AbuAli
|p 1718 -
|2 Crossref
|u AbuAli G, Chaisaklert W, Stelloo E, Pazarentzos E, Hwang MS, Qize D, Harding SV, Al-Rubaish A, Alzahrani AJ, Al-Ali A, Sanders TA, Aboagye EO, Grimm S (2015) The anticancer gene ORCTL3 targets stearoyl-CoA desaturase-1 for tumour-specific apoptosis. Oncogene 34(13):1718–1728. https://doi.org/10.1038/onc.2014.93
|t Oncogene
|v 34
|y 2015
999 C 5 |a 10.1016/j.biotechadv.2014.03.008
|9 -- missing cx lookup --
|1 H Adwan
|p 1077 -
|2 Crossref
|u Adwan H, Bayer H, Pervaiz A, Sagini M, Berger MR (2014a) Riproximin is a recently discovered type II ribosome inactivating protein with potential for treating cancer. Biotechnol Adv 32(6):1077–1090. https://doi.org/10.1016/j.biotechadv.2014.03.008
|t Biotechnol Adv
|v 32
|y 2014
999 C 5 |a 10.4161/cbt.29503
|9 -- missing cx lookup --
|1 H Adwan
|p 1185 -
|2 Crossref
|u Adwan H, Murtaja A, Kadhim Al-Taee K, Pervaiz A, Hielscher T, Berger MR (2014b) Riproximin’s activity depends on gene expression and sensitizes PDAC cells to TRAIL. Cancer Biol Ther 15(9):1185–1197. https://doi.org/10.4161/cbt.29503
|t Cancer Biol Ther
|v 15
|y 2014
999 C 5 |a 10.1016/j.ccr.2013.05.007
|9 -- missing cx lookup --
|1 JV Alvarez
|p 30 -
|2 Crossref
|u Alvarez JV, Pan TC, Ruth J, Feng Y, Zhou A, Pant D, Grimley JS, Wandless TJ, Demichele A, Investigators IST, Chodosh LA (2013) Par-4 downregulation promotes breast cancer recurrence by preventing multinucleation following targeted therapy. Cancer Cell 24(1):30–44. https://doi.org/10.1016/j.ccr.2013.05.007
|t Cancer Cell
|v 24
|y 2013
999 C 5 |a 10.1016/j.pep.2011.11.018
|9 -- missing cx lookup --
|1 H Bayer
|p 97 -
|2 Crossref
|u Bayer H, Ey N, Wattenberg A, Voss C, Berger MR (2012a) Purification and characterization of riproximin from Ximenia americana fruit kernels. Protein Expr Purif 82(1):97–105. https://doi.org/10.1016/j.pep.2011.11.018
|t Protein Expr Purif
|v 82
|y 2012
999 C 5 |a 10.1074/jbc.M112.368548
|9 -- missing cx lookup --
|1 H Bayer
|p 35873 -
|2 Crossref
|u Bayer H, Essig K, Stanzel S, Frank M, Gildersleeve JC, Berger MR, Voss C (2012b) Evaluation of riproximin binding properties reveals a novel mechanism for cellular targeting. J Biol Chem 287(43):35873–35886. https://doi.org/10.1074/jbc.M112.368548
|t J Biol Chem
|v 287
|y 2012
999 C 5 |a 10.1039/c7nr01469d
|9 -- missing cx lookup --
|1 H Belkahla
|p 5755 -
|2 Crossref
|u Belkahla H, Herlem G, Picaud F, Gharbi T, Hemadi M, Ammar S, Micheau O (2017) TRAIL-NP hybrids for cancer therapy: a review. Nanoscale 9(18):5755–5768. https://doi.org/10.1039/c7nr01469d
|t Nanoscale
|v 9
|y 2017
999 C 5 |a 10.3390/molecules21121627
|1 A Bolognesi
|9 -- missing cx lookup --
|2 Crossref
|u Bolognesi A, Bortolotti M, Maiello S, Battelli MG, Polito L (2016) Ribosome-inactivating proteins from plants: a historical overview. Molecules. https://doi.org/10.3390/molecules21121627
|t Molecules
|y 2016
999 C 5 |a 10.1038/cdd.2008.164
|9 -- missing cx lookup --
|1 P Bruno
|p 184 -
|2 Crossref
|u Bruno P, Brinkmann CR, Boulanger MC, Flinterman M, Klanrit P, Landry MC, Portsmouth D, Borst J, Tavassoli M, Noteborn M, Backendorf C, Zimmerman RM (2009) Family at last: highlights of the first international meeting on proteins killing tumour cells. Cell Death Differ 16(1):184–186. https://doi.org/10.1038/cdd.2008.164
|t Cell Death Differ
|v 16
|y 2009
999 C 5 |a 10.1016/j.celrep.2016.12.051
|9 -- missing cx lookup --
|1 R Burikhanov
|p 508 -
|2 Crossref
|u Burikhanov R, Hebbar N, Noothi SK, Shukla N, Sledziona J, Araujo N, Kudrimoti M, Wang QJ, Watt DS, Welch DR, Maranchie J, Harada A, Rangnekar VM (2017) Chloroquine-inducible Par-4 secretion is essential for tumor cell apoptosis and inhibition of metastasis. Cell Rep 18(2):508–519. https://doi.org/10.1016/j.celrep.2016.12.051
|t Cell Rep
|v 18
|y 2017
999 C 5 |a 10.1111/febs.15637
|9 -- missing cx lookup --
|1 L Cardoso Alves
|p 5530 -
|2 Crossref
|u Cardoso Alves L, Corazza N, Micheau O, Krebs P (2021) The multifaceted role of TRAIL signalling in cancer and immunity. FEBS J 288(19):5530–5554. https://doi.org/10.1111/febs.15637
|t FEBS J
|v 288
|y 2021
999 C 5 |1 L Chen
|y 2016
|2 Crossref
|u Chen L, Li C, Xie Y, Ye J, Cao J (2016) [Downregulation of proteinase activated receptor 4 inhibits migration of SW620 human colorectal cancer cells]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi Chin J Cell Mol Immunol 32(5):609–614
999 C 5 |a 10.3390/toxins2112699
|9 -- missing cx lookup --
|1 M de Virgilio
|p 2699 -
|2 Crossref
|u de Virgilio M, Lombardi A, Caliandro R, Fabbrini MS (2010) Ribosome-inactivating proteins: from plant defense to tumor attack. Toxins 2(11):2699–2737. https://doi.org/10.3390/toxins2112699
|t Toxins
|v 2
|y 2010
999 C 5 |a 10.1111/j.1582-4934.2011.01289.x
|9 -- missing cx lookup --
|1 R Georges
|p 260 -
|2 Crossref
|u Georges R, Bergmann F, Hamdi H, Zepp M, Eyol E, Hielscher T, Berger MR, Adwan H (2012) Sequential biphasic changes in claudin1 and claudin4 expression are correlated to colorectal cancer progression and liver metastasis. J Cell Mol Med 16(2):260–272. https://doi.org/10.1111/j.1582-4934.2011.01289.x
|t J Cell Mol Med
|v 16
|y 2012
999 C 5 |a 10.1158/0008-5472.CAN-05-4458
|9 -- missing cx lookup --
|1 A Goswami
|p 2889 -
|2 Crossref
|u Goswami A, Ranganathan P, Rangnekar VM (2006) The phosphoinositide 3-kinase/Akt1/Par-4 axis: a cancer-selective therapeutic target. Can Res 66(6):2889–2892. https://doi.org/10.1158/0008-5472.CAN-05-4458
|t Can Res
|v 66
|y 2006
999 C 5 |a 10.7554/eLife.67750
|1 JD Greenlee
|9 -- missing cx lookup --
|2 Crossref
|u Greenlee JD, Lopez-Cavestany M, Ortiz-Otero N, Liu K, Subramanian T, Cagir B, King MR (2021) Oxaliplatin resistance in colorectal cancer enhances TRAIL sensitivity via death receptor 4 upregulation and lipid raft localization. Elife. https://doi.org/10.7554/eLife.67750
|t Elife
|y 2021
999 C 5 |a 10.1016/j.molmed.2009.12.002
|9 -- missing cx lookup --
|1 S Grimm
|p 88 -
|2 Crossref
|u Grimm S, Noteborn M (2010) Anticancer genes: inducers of tumour-specific cell death signalling. Trends Mol Med 16(2):88–96. https://doi.org/10.1016/j.molmed.2009.12.002
|t Trends Mol Med
|v 16
|y 2010
999 C 5 |a 10.1080/14728222.2017.1349754
|9 -- missing cx lookup --
|1 JE Guikema
|p 767 -
|2 Crossref
|u Guikema JE, Amiot M, Eldering E (2017) Exploiting the pro-apoptotic function of NOXA as a therapeutic modality in cancer. Expert Opin Ther Targets 21(8):767–779. https://doi.org/10.1080/14728222.2017.1349754
|t Expert Opin Ther Targets
|v 21
|y 2017
999 C 5 |a 10.1038/s41598-019-45209-9
|9 -- missing cx lookup --
|1 H Guo
|p 8755 -
|2 Crossref
|u Guo H, Treude F, Kramer OH, Luscher B, Hartkamp J (2019) PAR-4 overcomes chemo-resistance in breast cancer cells by antagonizing cIAP1. Sci Rep 9(1):8755. https://doi.org/10.1038/s41598-019-45209-9
|t Sci Rep
|v 9
|y 2019
999 C 5 |a 10.1007/s00018-010-0524-2
|9 -- missing cx lookup --
|1 C Horrix
|p 1269 -
|2 Crossref
|u Horrix C, Raviv Z, Flescher E, Voss C, Berger MR (2011) Plant ribosome-inactivating proteins type II induce the unfolded protein response in human cancer cells. Cell Mol Life Sci CMLS 68(7):1269–1281. https://doi.org/10.1007/s00018-010-0524-2
|t Cell Mol Life Sci CMLS
|v 68
|y 2011
999 C 5 |a 10.1038/sj.onc.1206655
|9 -- missing cx lookup --
|1 AK Jansson
|p 4675 -
|2 Crossref
|u Jansson AK, Emterling AM, Arbman G, Sun XF (2003) Noxa in colorectal cancer: a study on DNA, mRNA and protein expression. Oncogene 22(30):4675–4678. https://doi.org/10.1038/sj.onc.1206655
|t Oncogene
|v 22
|y 2003
999 C 5 |a 10.1016/j.canlet.2019.01.011
|9 -- missing cx lookup --
|1 S Jeong
|p 12 -
|2 Crossref
|u Jeong S, Yun HK, Jeong YA, Jo MJ, Kang SH, Kim JL, Kim DY, Park SH, Kim BR, Na YJ, Lee SI, Kim HD, Kim DH, Oh SC, Lee DH (2019a) Cannabidiol-induced apoptosis is mediated by activation of Noxa in human colorectal cancer cells. Cancer Lett 447:12–23. https://doi.org/10.1016/j.canlet.2019.01.011
|t Cancer Lett
|v 447
|y 2019
999 C 5 |a 10.3390/nu11092026
|1 YA Jeong
|9 -- missing cx lookup --
|2 Crossref
|u Jeong YA, Kim BR, Kim DY, Jeong S, Na YJ, Kim JL, Yun HK, Kim BG, Park SH, Jo MJ, Lee SI, Han BC, Lee DH, Oh SC (2019b) Korean red ginseng extract increases apoptosis by activation of the Noxa pathway in colorectal cancer. Nutrients. https://doi.org/10.3390/nu11092026
|t Nutrients
|y 2019
999 C 5 |a 10.1038/cddis.2014.169
|1 HR Jin
|9 -- missing cx lookup --
|2 Crossref
|u Jin HR, Liao Y, Li X, Zhang Z, Zhao J, Wang CZ, Huang WH, Li SP, Yuan CS, Du W (2014) Anticancer compound Oplopantriol A kills cancer cells through inducing ER stress and BH3 proteins Bim and Noxa. Cell Death Dis 5:e1190. https://doi.org/10.1038/cddis.2014.169
|t Cell Death Dis
|v 5
|y 2014
999 C 5 |a 10.1038/s41419-021-04415-y
|9 -- missing cx lookup --
|1 G Karbon
|p 1151 -
|2 Crossref
|u Karbon G, Haschka MD, Hackl H, Soratroi C, Rocamora-Reverte L, Parson W, Fiegl H, Villunger A (2021) The BH3-only protein NOXA serves as an independent predictor of breast cancer patient survival and defines susceptibility to microtubule targeting agents. Cell Death Dis 12(12):1151. https://doi.org/10.1038/s41419-021-04415-y
|t Cell Death Dis
|v 12
|y 2021
999 C 5 |a 10.1007/s10495-011-0648-3
|9 -- missing cx lookup --
|1 CL Kline
|p 1285 -
|2 Crossref
|u Kline CL, Irby RB (2011) The pro-apoptotic protein Prostate Apoptosis Response Protein-4 (Par-4) can be activated in colon cancer cells by treatment with Src inhibitor and 5-FU. Apoptosis Int J Program Cell Death 16(12):1285–1294. https://doi.org/10.1007/s10495-011-0648-3
|t Apoptosis Int J Program Cell Death
|v 16
|y 2011
999 C 5 |a 10.1111/eci.13353
|1 V Kosmidou
|9 -- missing cx lookup --
|2 Crossref
|u Kosmidou V, Vlassi M, Anagiotos K, Raftopoulou S, Kalogerakou E, Skarmalioraki S, Aggeli C, Choreftaki T, Zografos G, Pintzas A (2021) Noxa upregulation and 5-gene apoptotic biomarker panel in colorectal cancer. Eur J Clin Invest 51(1):e13353. https://doi.org/10.1111/eci.13353
|t Eur J Clin Invest
|v 51
|y 2021
999 C 5 |a 10.3892/ol.2017.7526
|9 -- missing cx lookup --
|1 A Murtaja
|p 1441 -
|2 Crossref
|u Murtaja A, Eyol E, Xiaoqi J, Berger MR, Adwan H (2018) The ribosome inhibiting protein riproximin shows antineoplastic activity in experimental pancreatic cancer liver metastasis. Oncol Lett 15(2):1441–1448. https://doi.org/10.3892/ol.2017.7526
|t Oncol Lett
|v 15
|y 2018
999 C 5 |a 10.1158/1078-0432.CCR-08-1665
|9 -- missing cx lookup --
|1 K Okumura
|p 8132 -
|2 Crossref
|u Okumura K, Huang S, Sinicrope FA (2008) Induction of Noxa sensitizes human colorectal cancer cells expressing Mcl-1 to the small-molecule Bcl-2/Bcl-xL inhibitor, ABT-737. Clin Cancer Res 14(24):8132–8142. https://doi.org/10.1158/1078-0432.CCR-08-1665
|t Clin Cancer Res
|v 14
|y 2008
999 C 5 |a 10.3892/ijo.2015.3073
|9 -- missing cx lookup --
|1 A Pervaiz
|p 981 -
|2 Crossref
|u Pervaiz A, Adwan H, Berger MR (2015a) Riproximin: a type II ribosome inactivating protein with anti-neoplastic potential induces IL24/MDA-7 and GADD genes in colorectal cancer cell lines. Int J Oncol 47(3):981–990. https://doi.org/10.3892/ijo.2015.3073
|t Int J Oncol
|v 47
|y 2015
999 C 5 |a 10.1007/s12032-015-0607-x
|9 -- missing cx lookup --
|1 A Pervaiz
|p 158 -
|2 Crossref
|u Pervaiz A, Ansari S, Berger MR, Adwan H (2015b) CCR5 blockage by maraviroc induces cytotoxic and apoptotic effects in colorectal cancer cells. Med Oncol 32(5):158. https://doi.org/10.1007/s12032-015-0607-x
|t Med Oncol
|v 32
|y 2015
999 C 5 |a 10.1007/s00432-015-2013-3
|9 -- missing cx lookup --
|1 A Pervaiz
|p 135 -
|2 Crossref
|u Pervaiz A, Zepp M, Adwan H, Berger MR (2016) Riproximin modulates multiple signalling cascades leading to cytostatic and apoptotic effects in human breast cancer cells. J Cancer Res Clin Oncol 142(1):135–147. https://doi.org/10.1007/s00432-015-2013-3
|t J Cancer Res Clin Oncol
|v 142
|y 2016
999 C 5 |a 10.3389/fphar.2020.549804
|1 MN Sagini
|9 -- missing cx lookup --
|2 Crossref
|u Sagini MN, Klika KD, Orry A, Zepp M, Mutiso J, Berger MR (2020) Riproximin exhibits diversity in sugar binding, and modulates some metastasis-related proteins with lectin like properties in pancreatic ductal adenocarcinoma. Front Pharmacol 11:549804. https://doi.org/10.3389/fphar.2020.549804
|t Front Pharmacol
|v 11
|y 2020
999 C 5 |a 10.18632/oncotarget.1162
|9 -- missing cx lookup --
|1 G Saturno
|p 1185 -
|2 Crossref
|u Saturno G, Valenti M, De Haven BA, Thomas GV, Eccles S, Clarke PA, Workman P (2013) Combining trail with PI3 kinase or HSP90 inhibitors enhances apoptosis in colorectal cancer cells via suppression of survival signalling. Oncotarget 4(8):1185–1198. https://doi.org/10.18632/oncotarget.1162
|t Oncotarget
|v 4
|y 2013
999 C 5 |a 10.3892/ijo.2018.4661
|9 -- missing cx lookup --
|1 V Schirrmacher
|p 407 -
|2 Crossref
|u Schirrmacher V (2019) From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment (review). Int J Oncol 54(2):407–419. https://doi.org/10.3892/ijo.2018.4661
|t Int J Oncol
|v 54
|y 2019
999 C 5 |a 10.1038/onc.2010.380
|9 -- missing cx lookup --
|1 C Sheridan
|p 6428 -
|2 Crossref
|u Sheridan C, Brumatti G, Elgendy M, Brunet M, Martin SJ (2010) An ERK-dependent pathway to Noxa expression regulates apoptosis by platinum-based chemotherapeutic drugs. Oncogene 29(49):6428–6441. https://doi.org/10.1038/onc.2010.380
|t Oncogene
|v 29
|y 2010
999 C 5 |a 10.1038/onc.2010.141
|9 -- missing cx lookup --
|1 T Shrestha-Bhattarai
|p 3873 -
|2 Crossref
|u Shrestha-Bhattarai T, Rangnekar VM (2010) Cancer-selective apoptotic effects of extracellular and intracellular Par-4. Oncogene 29(27):3873–3880. https://doi.org/10.1038/onc.2010.141
|t Oncogene
|v 29
|y 2010
999 C 5 |a 10.3389/fmolb.2021.628332
|1 M Snajdauf
|9 -- missing cx lookup --
|2 Crossref
|u Snajdauf M, Havlova K, Vachtenheim J Jr, Ozaniak A, Lischke R, Bartunkova J, Smrz D, Strizova Z (2021) The TRAIL in the treatment of human cancer: an update on clinical trials. Front Mol Biosci 8:628332. https://doi.org/10.3389/fmolb.2021.628332
|t Front Mol Biosci
|v 8
|y 2021
999 C 5 |1 J Strater
|y 2002
|2 Crossref
|u Strater J, Hinz U, Walczak H, Mechtersheimer G, Koretz K, Herfarth C, Moller P, Lehnert T (2002) Expression of TRAIL and TRAIL receptors in colon carcinoma: TRAIL-R1 is an independent prognostic parameter. Clin Cancer Res 8(12):3734–3740
999 C 5 |a 10.1111/j.1349-7006.2009.01096.x
|9 -- missing cx lookup --
|1 S Suzuki
|p 759 -
|2 Crossref
|u Suzuki S, Nakasato M, Shibue T, Koshima I, Taniguchi T (2009) Therapeutic potential of proapoptotic molecule Noxa in the selective elimination of tumor cells. Cancer Sci 100(4):759–769. https://doi.org/10.1111/j.1349-7006.2009.01096.x
|t Cancer Sci
|v 100
|y 2009
999 C 5 |a 10.1016/j.toxlet.2013.10.008
|9 -- missing cx lookup --
|1 J Tan
|p 7 -
|2 Crossref
|u Tan J, You Y, Xu T, Yu P, Wu D, Deng H, Zhang Y, Bie P (2014) Par-4 downregulation confers cisplatin resistance in pancreatic cancer cells via PI3K/Akt pathway-dependent EMT. Toxicol Lett 224(1):7–15. https://doi.org/10.1016/j.toxlet.2013.10.008
|t Toxicol Lett
|v 224
|y 2014
999 C 5 |a 10.1016/j.bbamcr.2020.118692
|9 -- missing cx lookup --
|1 F Thayyullathil
|p 118692 -
|2 Crossref
|u Thayyullathil F, Cheratta AR, Pallichankandy S, Subburayan K, Tariq S, Rangnekar VM, Galadari S (2020) Par-4 regulates autophagic cell death in human cancer cells via upregulating p53 and BNIP3. Biochim Biophys Acta Mol Cell Res 1867 7:118692. https://doi.org/10.1016/j.bbamcr.2020.118692
|t Biochim Biophys Acta Mol Cell Res 1867
|v 7
|y 2020
999 C 5 |a 10.1096/fj.05-5231fje
|9 -- missing cx lookup --
|1 C Voss
|p 1194 -
|2 Crossref
|u Voss C, Eyol E, Frank M, von der Lieth CW, Berger MR (2006a) Identification and characterization of riproximin, a new type II ribosome-inactivating protein with antineoplastic activity from Ximenia americana. FASEB J 20(8):1194–1196. https://doi.org/10.1096/fj.05-5231fje
|t FASEB J
|v 20
|y 2006
999 C 5 |a 10.1016/j.taap.2005.05.016
|9 -- missing cx lookup --
|1 C Voss
|p 177 -
|2 Crossref
|u Voss C, Eyol E, Berger MR (2006b) Identification of potent anticancer activity in Ximenia americana aqueous extracts used by African traditional medicine. Toxicol Appl Pharmacol 211(3):177–187. https://doi.org/10.1016/j.taap.2005.05.016
|t Toxicol Appl Pharmacol
|v 211
|y 2006
999 C 5 |a 10.1186/1476-4598-9-98
|9 -- missing cx lookup --
|1 BD Wang
|p 98 -
|2 Crossref
|u Wang BD, Kline CL, Pastor DM, Olson TL, Frank B, Luu T, Sharma AK, Robertson G, Weirauch MT, Patierno SR, Stuart JM, Irby RB, Lee NH (2010) Prostate apoptosis response protein 4 sensitizes human colon cancer cells to chemotherapeutic 5-FU through mediation of an NF kappaB and microRNA network. Mol Cancer 9:98. https://doi.org/10.1186/1476-4598-9-98
|t Mol Cancer
|v 9
|y 2010
999 C 5 |a 10.1177/0300060518820785
|9 -- missing cx lookup --
|1 LS Wu
|p 962 -
|2 Crossref
|u Wu LS, Wang XW, He W, Ma XT, Wang HY, Han M, Li BH (2019) TRAIL inhibits platelet-induced colorectal cancer cell invasion. J Int Med Res 47(2):962–972. https://doi.org/10.1177/0300060518820785
|t J Int Med Res
|v 47
|y 2019
999 C 5 |a 10.1371/journal.pone.0122678
|1 G Yu
|9 -- missing cx lookup --
|2 Crossref
|u Yu G, Jiang P, Xiang Y, Zhang Y, Zhu Z, Zhang C, Lee S, Lee W, Zhang Y (2015) Increased expression of protease-activated receptor 4 and Trefoil factor 2 in human colorectal cancer. PLoS ONE 10(4):e0122678. https://doi.org/10.1371/journal.pone.0122678
|t PLoS ONE
|v 10
|y 2015
999 C 5 |a 10.3892/ol.2018.9407
|9 -- missing cx lookup --
|1 H Zhang
|p 5745 -
|2 Crossref
|u Zhang H, Jiang P, Zhang C, Lee S, Wang W, Zou H (2018) PAR-4 overexpression promotes colorectal cancer cell proliferation and migration. Oncol Lett 16(5):5745–5752. https://doi.org/10.3892/ol.2018.9407
|t Oncol Lett
|v 16
|y 2018
999 C 5 |a 10.1016/j.phymed.2020.153306
|1 Q Zhao
|9 -- missing cx lookup --
|2 Crossref
|u Zhao Q, Zhong J, Bi Y, Liu Y, Liu Y, Guo J, Pan L, Tan Y, Yu X (2020) Gambogenic acid induces Noxa-mediated apoptosis in colorectal cancer through ROS-dependent activation of IRE1alpha/JNK. Phytomed Int J Phytother Phytopharmacol 78:153306. https://doi.org/10.1016/j.phymed.2020.153306
|t Phytomed Int J Phytother Phytopharmacol
|v 78
|y 2020
999 C 5 |a 10.1016/j.phymed.2021.153723
|1 Q Zhao
|9 -- missing cx lookup --
|2 Crossref
|u Zhao Q, Cheng X, Yu W, Bi Y, Guo J, Ma Q, Gong Y, He L, Yu X (2021) Pristimerin induces apoptosis and tumor inhibition of oral squamous cell carcinoma through activating ROS-dependent ER stress/Noxa pathway. Phytomed Int J Phytother Phytopharmacol 92:153723. https://doi.org/10.1016/j.phymed.2021.153723
|t Phytomed Int J Phytother Phytopharmacol
|v 92
|y 2021
999 C 5 |a 10.1038/gt.2010.5
|9 -- missing cx lookup --
|1 MF Ziauddin
|p 550 -
|2 Crossref
|u Ziauddin MF, Guo ZS, O’Malley ME, Austin F, Popovic PJ, Kavanagh MA, Li J, Sathaiah M, Thirunavukarasu P, Fang B, Lee YJ, Bartlett DL (2010) TRAIL gene-armed oncolytic poxvirus and oxaliplatin can work synergistically against colorectal cancer. Gene Ther 17(4):550–559. https://doi.org/10.1038/gt.2010.5
|t Gene Ther
|v 17
|y 2010


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21