000182151 001__ 182151
000182151 005__ 20240229145711.0
000182151 0247_ $$2doi$$a10.1186/s12916-022-02553-4
000182151 0247_ $$2pmid$$apmid:36258205
000182151 0247_ $$2altmetric$$aaltmetric:137382993
000182151 037__ $$aDKFZ-2022-02462
000182151 041__ $$aEnglish
000182151 082__ $$a610
000182151 1001_ $$aBreeur, Marie$$b0
000182151 245__ $$aPan-cancer analysis of pre-diagnostic blood metabolite concentrations in the European Prospective Investigation into Cancer and Nutrition.
000182151 260__ $$aHeidelberg [u.a.]$$bSpringer$$c2022
000182151 3367_ $$2DRIVER$$aarticle
000182151 3367_ $$2DataCite$$aOutput Types/Journal article
000182151 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1666184163_14105
000182151 3367_ $$2BibTeX$$aARTICLE
000182151 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000182151 3367_ $$00$$2EndNote$$aJournal Article
000182151 520__ $$aEpidemiological studies of associations between metabolites and cancer risk have typically focused on specific cancer types separately. Here, we designed a multivariate pan-cancer analysis to identify metabolites potentially associated with multiple cancer types, while also allowing the investigation of cancer type-specific associations.We analysed targeted metabolomics data available for 5828 matched case-control pairs from cancer-specific case-control studies on breast, colorectal, endometrial, gallbladder, kidney, localized and advanced prostate cancer, and hepatocellular carcinoma nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. From pre-diagnostic blood levels of an initial set of 117 metabolites, 33 cluster representatives of strongly correlated metabolites and 17 single metabolites were derived by hierarchical clustering. The mutually adjusted associations of the resulting 50 metabolites with cancer risk were examined in penalized conditional logistic regression models adjusted for body mass index, using the data-shared lasso penalty.Out of the 50 studied metabolites, (i) six were inversely associated with the risk of most cancer types: glutamine, butyrylcarnitine, lysophosphatidylcholine a C18:2, and three clusters of phosphatidylcholines (PCs); (ii) three were positively associated with most cancer types: proline, decanoylcarnitine, and one cluster of PCs; and (iii) 10 were specifically associated with particular cancer types, including histidine that was inversely associated with colorectal cancer risk and one cluster of sphingomyelins that was inversely associated with risk of hepatocellular carcinoma and positively with endometrial cancer risk.These results could provide novel insights for the identification of pathways for cancer development, in particular those shared across different cancer types.
000182151 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000182151 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000182151 650_7 $$2Other$$aBreast
000182151 650_7 $$2Other$$aCancer
000182151 650_7 $$2Other$$aColorectal
000182151 650_7 $$2Other$$aEPIC
000182151 650_7 $$2Other$$aEndometrial
000182151 650_7 $$2Other$$aKidney
000182151 650_7 $$2Other$$aLasso
000182151 650_7 $$2Other$$aLiver
000182151 650_7 $$2Other$$aMetabolomics
000182151 650_7 $$2Other$$aProstate
000182151 7001_ $$aFerrari, Pietro$$b1
000182151 7001_ $$aDossus, Laure$$b2
000182151 7001_ $$aJenab, Mazda$$b3
000182151 7001_ $$aJohansson, Mattias$$b4
000182151 7001_ $$aRinaldi, Sabina$$b5
000182151 7001_ $$aTravis, Ruth C$$b6
000182151 7001_ $$aHis, Mathilde$$b7
000182151 7001_ $$aKey, Tim J$$b8
000182151 7001_ $$aSchmidt, Julie A$$b9
000182151 7001_ $$aOvervad, Kim$$b10
000182151 7001_ $$aTjønneland, Anne$$b11
000182151 7001_ $$aKyrø, Cecilie$$b12
000182151 7001_ $$aRothwell, Joseph A$$b13
000182151 7001_ $$aLaouali, Nasser$$b14
000182151 7001_ $$aSeveri, Gianluca$$b15
000182151 7001_ $$0P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aKaaks, Rudolf$$b16$$udkfz
000182151 7001_ $$0P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4$$aKatzke, Verena$$b17$$udkfz
000182151 7001_ $$aSchulze, Matthias B$$b18
000182151 7001_ $$aEichelmann, Fabian$$b19
000182151 7001_ $$aPalli, Domenico$$b20
000182151 7001_ $$aGrioni, Sara$$b21
000182151 7001_ $$aPanico, Salvatore$$b22
000182151 7001_ $$aTumino, Rosario$$b23
000182151 7001_ $$aSacerdote, Carlotta$$b24
000182151 7001_ $$aBueno-de-Mesquita, Bas$$b25
000182151 7001_ $$aOlsen, Karina Standahl$$b26
000182151 7001_ $$aSandanger, Torkjel Manning$$b27
000182151 7001_ $$aNøst, Therese Haugdahl$$b28
000182151 7001_ $$aQuirós, J Ramón$$b29
000182151 7001_ $$aBonet, Catalina$$b30
000182151 7001_ $$aBarranco, Miguel Rodríguez$$b31
000182151 7001_ $$aChirlaque, María-Dolores$$b32
000182151 7001_ $$aArdanaz, Eva$$b33
000182151 7001_ $$aSandsveden, Malte$$b34
000182151 7001_ $$aManjer, Jonas$$b35
000182151 7001_ $$aVidman, Linda$$b36
000182151 7001_ $$aRentoft, Matilda$$b37
000182151 7001_ $$aMuller, David$$b38
000182151 7001_ $$aTsilidis, Kostas$$b39
000182151 7001_ $$aHeath, Alicia K$$b40
000182151 7001_ $$aKeun, Hector$$b41
000182151 7001_ $$aAdamski, Jerzy$$b42
000182151 7001_ $$aKeski-Rahkonen, Pekka$$b43
000182151 7001_ $$aScalbert, Augustin$$b44
000182151 7001_ $$aGunter, Marc J$$b45
000182151 7001_ $$aViallon, Vivian$$b46
000182151 773__ $$0PERI:(DE-600)2131669-7$$a10.1186/s12916-022-02553-4$$gVol. 20, no. 1, p. 351$$n1$$p351$$tBMC medicine$$v20$$x1741-7015$$y2022
000182151 909CO $$ooai:inrepo02.dkfz.de:182151$$pVDB
000182151 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aDeutsches Krebsforschungszentrum$$b16$$kDKFZ
000182151 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4$$aDeutsches Krebsforschungszentrum$$b17$$kDKFZ
000182151 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000182151 9141_ $$y2022
000182151 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-01-29
000182151 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000182151 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-29
000182151 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000182151 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-29
000182151 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-29
000182151 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBMC MED : 2021$$d2022-11-25
000182151 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-25
000182151 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-25
000182151 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-14T16:19:46Z
000182151 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-14T16:19:46Z
000182151 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review$$d2021-02-14T16:19:46Z
000182151 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-25
000182151 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-25
000182151 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-25
000182151 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-25
000182151 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-25
000182151 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2022-11-25
000182151 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bBMC MED : 2021$$d2022-11-25
000182151 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x0
000182151 980__ $$ajournal
000182151 980__ $$aVDB
000182151 980__ $$aI:(DE-He78)C020-20160331
000182151 980__ $$aUNRESTRICTED