001     182151
005     20240229145711.0
024 7 _ |a 10.1186/s12916-022-02553-4
|2 doi
024 7 _ |a pmid:36258205
|2 pmid
024 7 _ |a altmetric:137382993
|2 altmetric
037 _ _ |a DKFZ-2022-02462
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Breeur, Marie
|b 0
245 _ _ |a Pan-cancer analysis of pre-diagnostic blood metabolite concentrations in the European Prospective Investigation into Cancer and Nutrition.
260 _ _ |a Heidelberg [u.a.]
|c 2022
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1666184163_14105
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Epidemiological studies of associations between metabolites and cancer risk have typically focused on specific cancer types separately. Here, we designed a multivariate pan-cancer analysis to identify metabolites potentially associated with multiple cancer types, while also allowing the investigation of cancer type-specific associations.We analysed targeted metabolomics data available for 5828 matched case-control pairs from cancer-specific case-control studies on breast, colorectal, endometrial, gallbladder, kidney, localized and advanced prostate cancer, and hepatocellular carcinoma nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. From pre-diagnostic blood levels of an initial set of 117 metabolites, 33 cluster representatives of strongly correlated metabolites and 17 single metabolites were derived by hierarchical clustering. The mutually adjusted associations of the resulting 50 metabolites with cancer risk were examined in penalized conditional logistic regression models adjusted for body mass index, using the data-shared lasso penalty.Out of the 50 studied metabolites, (i) six were inversely associated with the risk of most cancer types: glutamine, butyrylcarnitine, lysophosphatidylcholine a C18:2, and three clusters of phosphatidylcholines (PCs); (ii) three were positively associated with most cancer types: proline, decanoylcarnitine, and one cluster of PCs; and (iii) 10 were specifically associated with particular cancer types, including histidine that was inversely associated with colorectal cancer risk and one cluster of sphingomyelins that was inversely associated with risk of hepatocellular carcinoma and positively with endometrial cancer risk.These results could provide novel insights for the identification of pathways for cancer development, in particular those shared across different cancer types.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Breast
|2 Other
650 _ 7 |a Cancer
|2 Other
650 _ 7 |a Colorectal
|2 Other
650 _ 7 |a EPIC
|2 Other
650 _ 7 |a Endometrial
|2 Other
650 _ 7 |a Kidney
|2 Other
650 _ 7 |a Lasso
|2 Other
650 _ 7 |a Liver
|2 Other
650 _ 7 |a Metabolomics
|2 Other
650 _ 7 |a Prostate
|2 Other
700 1 _ |a Ferrari, Pietro
|b 1
700 1 _ |a Dossus, Laure
|b 2
700 1 _ |a Jenab, Mazda
|b 3
700 1 _ |a Johansson, Mattias
|b 4
700 1 _ |a Rinaldi, Sabina
|b 5
700 1 _ |a Travis, Ruth C
|b 6
700 1 _ |a His, Mathilde
|b 7
700 1 _ |a Key, Tim J
|b 8
700 1 _ |a Schmidt, Julie A
|b 9
700 1 _ |a Overvad, Kim
|b 10
700 1 _ |a Tjønneland, Anne
|b 11
700 1 _ |a Kyrø, Cecilie
|b 12
700 1 _ |a Rothwell, Joseph A
|b 13
700 1 _ |a Laouali, Nasser
|b 14
700 1 _ |a Severi, Gianluca
|b 15
700 1 _ |a Kaaks, Rudolf
|0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
|b 16
|u dkfz
700 1 _ |a Katzke, Verena
|0 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4
|b 17
|u dkfz
700 1 _ |a Schulze, Matthias B
|b 18
700 1 _ |a Eichelmann, Fabian
|b 19
700 1 _ |a Palli, Domenico
|b 20
700 1 _ |a Grioni, Sara
|b 21
700 1 _ |a Panico, Salvatore
|b 22
700 1 _ |a Tumino, Rosario
|b 23
700 1 _ |a Sacerdote, Carlotta
|b 24
700 1 _ |a Bueno-de-Mesquita, Bas
|b 25
700 1 _ |a Olsen, Karina Standahl
|b 26
700 1 _ |a Sandanger, Torkjel Manning
|b 27
700 1 _ |a Nøst, Therese Haugdahl
|b 28
700 1 _ |a Quirós, J Ramón
|b 29
700 1 _ |a Bonet, Catalina
|b 30
700 1 _ |a Barranco, Miguel Rodríguez
|b 31
700 1 _ |a Chirlaque, María-Dolores
|b 32
700 1 _ |a Ardanaz, Eva
|b 33
700 1 _ |a Sandsveden, Malte
|b 34
700 1 _ |a Manjer, Jonas
|b 35
700 1 _ |a Vidman, Linda
|b 36
700 1 _ |a Rentoft, Matilda
|b 37
700 1 _ |a Muller, David
|b 38
700 1 _ |a Tsilidis, Kostas
|b 39
700 1 _ |a Heath, Alicia K
|b 40
700 1 _ |a Keun, Hector
|b 41
700 1 _ |a Adamski, Jerzy
|b 42
700 1 _ |a Keski-Rahkonen, Pekka
|b 43
700 1 _ |a Scalbert, Augustin
|b 44
700 1 _ |a Gunter, Marc J
|b 45
700 1 _ |a Viallon, Vivian
|b 46
773 _ _ |a 10.1186/s12916-022-02553-4
|g Vol. 20, no. 1, p. 351
|0 PERI:(DE-600)2131669-7
|n 1
|p 351
|t BMC medicine
|v 20
|y 2022
|x 1741-7015
909 C O |o oai:inrepo02.dkfz.de:182151
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 16
|6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 17
|6 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BMC MED : 2021
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-02-14T16:19:46Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-02-14T16:19:46Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Open peer review
|d 2021-02-14T16:19:46Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-25
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b BMC MED : 2021
|d 2022-11-25
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21