Home > Publications database > Next generation L2-based HPV vaccines cross-protect against cutaneous papillomavirus infection and tumor development. > print |
001 | 182185 | ||
005 | 20240229145713.0 | ||
024 | 7 | _ | |a 10.3389/fimmu.2022.1010790 |2 doi |
024 | 7 | _ | |a pmid:36263027 |2 pmid |
024 | 7 | _ | |a pmc:PMC9574214 |2 pmc |
024 | 7 | _ | |a altmetric:136725314 |2 altmetric |
037 | _ | _ | |a DKFZ-2022-02487 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Ahmels, Melinda |0 P:(DE-He78)bc487db59becdf534f61e0fb31bc801d |b 0 |e First author |u dkfz |
245 | _ | _ | |a Next generation L2-based HPV vaccines cross-protect against cutaneous papillomavirus infection and tumor development. |
260 | _ | _ | |a Lausanne |c 2022 |b Frontiers Media |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1666356138_20556 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a #EA:F030#EA:F035#LA:F030# |
520 | _ | _ | |a Licensed L1-VLP-based immunizations against high-risk mucosal human papillomavirus (HPV) types have been a great success in reducing anogenital cancers, although they are limited in their cross-protection against HPV types not covered by the vaccine. Further, their utility in protection against cutaneous HPV types, of which some contribute to non-melanoma skin cancer (NMSC) development, is rather low. Next generation vaccines achieve broadly cross-protective immunity against highly conserved sequences of L2. In this exploratory study, we tested two novel HPV vaccine candidates, HPV16 RG1-VLP and CUT-PANHPVAX, in the preclinical natural infection model Mastomys coucha. After immunization with either vaccines, a mock control or MnPV L1-VLPs, the animals were experimentally infected and monitored. Besides vaccine-specific seroconversion against HPV L2 peptides, the animals also developed cross-reactive antibodies against the cutaneous Mastomys natalensis papillomavirus (MnPV) L2, which were cross-neutralizing MnPV pseudovirions in vitro. Further, both L2-based vaccines also conferred in vivo protection as the viral loads in plucked hair after experimental infection were lower compared to mock-vaccinated control animals. Importantly, the formation of neutralizing antibodies, whether directed against L1-VLPs or L2, was able to prevent skin tumor formation and even microscopical signs of MnPV infection in the skin. For the first time, our study shows the proof-of-principle of next generation L2-based vaccines even across different PV genera in an infection animal model with its genuine PV. It provides fundamental insights into the humoral immunity elicited by L2-based vaccines against PV-induced skin tumors, with important implications to the design of next generation HPV vaccines. |
536 | _ | _ | |a 316 - Infektionen, Entzündung und Krebs (POF4-316) |0 G:(DE-HGF)POF4-316 |c POF4-316 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a L2-based vaccine |2 Other |
650 | _ | 7 | |a Mastomys coucha |2 Other |
650 | _ | 7 | |a animal model |2 Other |
650 | _ | 7 | |a cross-protection |2 Other |
650 | _ | 7 | |a cutaneous HPV |2 Other |
650 | _ | 7 | |a next generation vaccine |2 Other |
650 | _ | 7 | |a skin tumor formation |2 Other |
650 | _ | 7 | |a skin tumors |2 Other |
650 | _ | 7 | |a Papillomavirus Vaccines |2 NLM Chemicals |
650 | _ | 7 | |a Oncogene Proteins, Viral |2 NLM Chemicals |
650 | _ | 7 | |a Vaccines, Virus-Like Particle |2 NLM Chemicals |
650 | _ | 7 | |a Capsid Proteins |2 NLM Chemicals |
650 | _ | 7 | |a Antibodies, Neutralizing |2 NLM Chemicals |
650 | _ | 7 | |a Peptides |2 NLM Chemicals |
650 | _ | 2 | |a Mice |2 MeSH |
650 | _ | 2 | |a Animals |2 MeSH |
650 | _ | 2 | |a Humans |2 MeSH |
650 | _ | 2 | |a Papillomavirus Vaccines |2 MeSH |
650 | _ | 2 | |a Papillomavirus Infections |2 MeSH |
650 | _ | 2 | |a Oncogene Proteins, Viral |2 MeSH |
650 | _ | 2 | |a Vaccines, Virus-Like Particle |2 MeSH |
650 | _ | 2 | |a Neutralization Tests |2 MeSH |
650 | _ | 2 | |a Capsid Proteins |2 MeSH |
650 | _ | 2 | |a Mice, Inbred BALB C |2 MeSH |
650 | _ | 2 | |a Papillomaviridae |2 MeSH |
650 | _ | 2 | |a Antibodies, Neutralizing |2 MeSH |
650 | _ | 2 | |a Neoplasms |2 MeSH |
650 | _ | 2 | |a Peptides |2 MeSH |
700 | 1 | _ | |a Mariz, Filipe C |0 P:(DE-HGF)0 |b 1 |e First author |
700 | 1 | _ | |a Braspenning-Wesch, Ilona |0 P:(DE-He78)810ef819c7d86928b119192db5730fc7 |b 2 |u dkfz |
700 | 1 | _ | |a Stephan, Sonja |0 P:(DE-He78)fd869847d6731bf306dce72ed1ef343b |b 3 |u dkfz |
700 | 1 | _ | |a Huber, Bettina |b 4 |
700 | 1 | _ | |a Schmidt, Gabriele |0 P:(DE-He78)e8868a5fc184fe2e756d7e11ad1ac748 |b 5 |u dkfz |
700 | 1 | _ | |a Cao, Rui |0 P:(DE-He78)aa2868b980249801b3207f4fbf65660b |b 6 |
700 | 1 | _ | |a Müller, Martin |0 P:(DE-He78)4cbf38280ce272e37f96081b070dd46a |b 7 |u dkfz |
700 | 1 | _ | |a Kirnbauer, Reinhard |b 8 |
700 | 1 | _ | |a Rösl, Frank |0 P:(DE-He78)97f27961503f8b3233697cbad1bbed4e |b 9 |u dkfz |
700 | 1 | _ | |a Hasche, Daniel |0 P:(DE-He78)93b84588571c05b85df1c0916f740e98 |b 10 |e Last author |u dkfz |
773 | _ | _ | |a 10.3389/fimmu.2022.1010790 |g Vol. 13, p. 1010790 |0 PERI:(DE-600)2606827-8 |p 1010790 |t Frontiers in immunology |v 13 |y 2022 |x 1664-3224 |
909 | C | O | |o oai:inrepo02.dkfz.de:182185 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)bc487db59becdf534f61e0fb31bc801d |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 P:(DE-He78)810ef819c7d86928b119192db5730fc7 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 P:(DE-He78)fd869847d6731bf306dce72ed1ef343b |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 5 |6 P:(DE-He78)e8868a5fc184fe2e756d7e11ad1ac748 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 6 |6 P:(DE-He78)aa2868b980249801b3207f4fbf65660b |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 7 |6 P:(DE-He78)4cbf38280ce272e37f96081b070dd46a |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 9 |6 P:(DE-He78)97f27961503f8b3233697cbad1bbed4e |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 10 |6 P:(DE-He78)93b84588571c05b85df1c0916f740e98 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-316 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Infektionen, Entzündung und Krebs |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-29 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-29 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-01-29 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-01-29 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b FRONT IMMUNOL : 2021 |d 2022-11-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-05-11T10:28:02Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-05-11T10:28:02Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2021-05-11T10:28:02Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-23 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b FRONT IMMUNOL : 2021 |d 2022-11-23 |
920 | 2 | _ | |0 I:(DE-He78)F030-20160331 |k F030 |l F030 Virale Transformationsmechanismen |x 0 |
920 | 1 | _ | |0 I:(DE-He78)F030-20160331 |k F030 |l F030 Virale Transformationsmechanismen |x 0 |
920 | 1 | _ | |0 I:(DE-He78)F035-20160331 |k F035 |l F035 Tumorvirus-spez. Vakzinierungsstrategie |x 1 |
920 | 1 | _ | |0 I:(DE-He78)W210-20160331 |k W210 |l Lichtmikroskopie |x 2 |
920 | 0 | _ | |0 I:(DE-He78)F030-20160331 |k F030 |l F030 Virale Transformationsmechanismen |x 0 |
920 | 0 | _ | |0 I:(DE-He78)F035-20160331 |k F035 |l F035 Tumorvirus-spez. Vakzinierungsstrategie |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)F030-20160331 |
980 | _ | _ | |a I:(DE-He78)F035-20160331 |
980 | _ | _ | |a I:(DE-He78)W210-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|