000182208 001__ 182208
000182208 005__ 20240917160155.0
000182208 0247_ $$2doi$$a10.1186/s13058-022-01567-3
000182208 0247_ $$2pmid$$apmid:36271417
000182208 0247_ $$2ISSN$$a1465-5411
000182208 0247_ $$2ISSN$$a1465-542X
000182208 0247_ $$2altmetric$$aaltmetric:137567787
000182208 037__ $$aDKFZ-2022-02502
000182208 041__ $$aEnglish
000182208 082__ $$a610
000182208 1001_ $$aGiardiello, Daniele$$b0
000182208 245__ $$aPredictCBC-2.0: a contralateral breast cancer risk prediction model developed and validated in ~ 200,000 patients.
000182208 260__ $$aLondon$$bBioMed Central$$c2022
000182208 3367_ $$2DRIVER$$aarticle
000182208 3367_ $$2DataCite$$aOutput Types/Journal article
000182208 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1726581691_15212
000182208 3367_ $$2BibTeX$$aARTICLE
000182208 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000182208 3367_ $$00$$2EndNote$$aJournal Article
000182208 520__ $$aPrediction of contralateral breast cancer (CBC) risk is challenging due to moderate performances of the known risk factors. We aimed to improve our previous risk prediction model (PredictCBC) by updated follow-up and including additional risk factors.We included data from 207,510 invasive breast cancer patients participating in 23 studies. In total, 8225 CBC events occurred over a median follow-up of 10.2 years. In addition to the previously included risk factors, PredictCBC-2.0 included CHEK2 c.1100delC, a 313 variant polygenic risk score (PRS-313), body mass index (BMI), and parity. Fine and Gray regression was used to fit the model. Calibration and a time-dependent area under the curve (AUC) at 5 and 10 years were assessed to determine the performance of the models. Decision curve analysis was performed to evaluate the net benefit of PredictCBC-2.0 and previous PredictCBC models.The discrimination of PredictCBC-2.0 at 10 years was higher than PredictCBC with an AUC of 0.65 (95% prediction intervals (PI) 0.56-0.74) versus 0.63 (95%PI 0.54-0.71). PredictCBC-2.0 was well calibrated with an observed/expected ratio at 10 years of 0.92 (95%PI 0.34-2.54). Decision curve analysis for contralateral preventive mastectomy (CPM) showed the potential clinical utility of PredictCBC-2.0 between thresholds of 4 and 12% 10-year CBC risk for BRCA1/2 mutation carriers and non-carriers.Additional genetic information beyond BRCA1/2 germline mutations improved CBC risk prediction and might help tailor clinical decision-making toward CPM or alternative preventive strategies. Identifying patients who benefit from CPM, especially in the general breast cancer population, remains challenging.
000182208 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000182208 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000182208 650_7 $$2Other$$aBCAC
000182208 650_7 $$2Other$$aBRCA1/2 germline mutation
000182208 650_7 $$2Other$$aBreast Cancer Association Consortium
000182208 650_7 $$2Other$$aBreast cancer genetic predisposition
000182208 650_7 $$2Other$$aClinical decision-making
000182208 650_7 $$2Other$$aContralateral breast cancer
000182208 650_7 $$2Other$$aContralateral preventive mastectomy
000182208 650_7 $$2Other$$aPolygenic risk score
000182208 650_7 $$2Other$$aPrediction performance
000182208 650_7 $$2Other$$aRisk prediction
000182208 7001_ $$aHooning, Maartje J$$b1
000182208 7001_ $$aHauptmann, Michael$$b2
000182208 7001_ $$aKeeman, Renske$$b3
000182208 7001_ $$aHeemskerk-Gerritsen, B. A. M.$$b4
000182208 7001_ $$aBecher, Heiko$$b5
000182208 7001_ $$aBlomqvist, Carl$$b6
000182208 7001_ $$aBojesen, Stig E$$b7
000182208 7001_ $$aBolla, Manjeet K$$b8
000182208 7001_ $$aCamp, Nicola J$$b9
000182208 7001_ $$aCzene, Kamila$$b10
000182208 7001_ $$aDevilee, Peter$$b11
000182208 7001_ $$aEccles, Diana M$$b12
000182208 7001_ $$aFasching, Peter A$$b13
000182208 7001_ $$aFigueroa, Jonine D$$b14
000182208 7001_ $$aFlyger, Henrik$$b15
000182208 7001_ $$aGarcía-Closas, Montserrat$$b16
000182208 7001_ $$aHaiman, Christopher A$$b17
000182208 7001_ $$0P:(DE-He78)537e07b3e57b16c7b214fc2242e4326b$$aHamann, Ute$$b18$$udkfz
000182208 7001_ $$aHopper, John L$$b19
000182208 7001_ $$aJakubowska, Anna$$b20
000182208 7001_ $$aLeeuwen, Floor E$$b21
000182208 7001_ $$aLindblom, Annika$$b22
000182208 7001_ $$aLubiński, Jan$$b23
000182208 7001_ $$aMargolin, Sara$$b24
000182208 7001_ $$aMartinez, Maria Elena$$b25
000182208 7001_ $$aNevanlinna, Heli$$b26
000182208 7001_ $$aNevelsteen, Ines$$b27
000182208 7001_ $$aPelders, Saskia$$b28
000182208 7001_ $$aPharoah, Paul D P$$b29
000182208 7001_ $$aSiesling, Sabine$$b30
000182208 7001_ $$aSouthey, Melissa C$$b31
000182208 7001_ $$avan der Hout, Annemieke H$$b32
000182208 7001_ $$avan Hest, Liselotte P$$b33
000182208 7001_ $$0P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253$$aChang-Claude, Jenny$$b34$$udkfz
000182208 7001_ $$aHall, Per$$b35
000182208 7001_ $$aEaston, Douglas F$$b36
000182208 7001_ $$aSteyerberg, Ewout W$$b37
000182208 7001_ $$aSchmidt, Marjanka K$$b38
000182208 773__ $$0PERI:(DE-600)2041618-0$$a10.1186/s13058-022-01567-3$$gVol. 24, no. 1, p. 69$$n1$$p69$$tBreast cancer research$$v24$$x1465-5411$$y2022
000182208 909CO $$ooai:inrepo02.dkfz.de:182208$$pVDB
000182208 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)537e07b3e57b16c7b214fc2242e4326b$$aDeutsches Krebsforschungszentrum$$b18$$kDKFZ
000182208 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253$$aDeutsches Krebsforschungszentrum$$b34$$kDKFZ
000182208 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000182208 9141_ $$y2022
000182208 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-02-02
000182208 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000182208 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000182208 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000182208 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000182208 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000182208 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-19
000182208 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-19
000182208 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-05-24T16:49:57Z
000182208 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-05-24T16:49:57Z
000182208 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-05-24T16:49:57Z
000182208 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-19
000182208 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-19
000182208 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2022-11-19
000182208 9201_ $$0I:(DE-He78)B070-20160331$$kB070$$lB070 Funktionelle Genomanalyse$$x0
000182208 9201_ $$0I:(DE-He78)B072-20160331$$kB072$$lMolekulargenetik des Mammakarzinoms$$x1
000182208 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x2
000182208 980__ $$ajournal
000182208 980__ $$aVDB
000182208 980__ $$aI:(DE-He78)B070-20160331
000182208 980__ $$aI:(DE-He78)B072-20160331
000182208 980__ $$aI:(DE-He78)C020-20160331
000182208 980__ $$aUNRESTRICTED