Home > Publications database > PredictCBC-2.0: a contralateral breast cancer risk prediction model developed and validated in ~ 200,000 patients. > print |
001 | 182208 | ||
005 | 20240917160155.0 | ||
024 | 7 | _ | |a 10.1186/s13058-022-01567-3 |2 doi |
024 | 7 | _ | |a pmid:36271417 |2 pmid |
024 | 7 | _ | |a 1465-5411 |2 ISSN |
024 | 7 | _ | |a 1465-542X |2 ISSN |
024 | 7 | _ | |a altmetric:137567787 |2 altmetric |
037 | _ | _ | |a DKFZ-2022-02502 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Giardiello, Daniele |b 0 |
245 | _ | _ | |a PredictCBC-2.0: a contralateral breast cancer risk prediction model developed and validated in ~ 200,000 patients. |
260 | _ | _ | |a London |c 2022 |b BioMed Central |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1726581691_15212 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Prediction of contralateral breast cancer (CBC) risk is challenging due to moderate performances of the known risk factors. We aimed to improve our previous risk prediction model (PredictCBC) by updated follow-up and including additional risk factors.We included data from 207,510 invasive breast cancer patients participating in 23 studies. In total, 8225 CBC events occurred over a median follow-up of 10.2 years. In addition to the previously included risk factors, PredictCBC-2.0 included CHEK2 c.1100delC, a 313 variant polygenic risk score (PRS-313), body mass index (BMI), and parity. Fine and Gray regression was used to fit the model. Calibration and a time-dependent area under the curve (AUC) at 5 and 10 years were assessed to determine the performance of the models. Decision curve analysis was performed to evaluate the net benefit of PredictCBC-2.0 and previous PredictCBC models.The discrimination of PredictCBC-2.0 at 10 years was higher than PredictCBC with an AUC of 0.65 (95% prediction intervals (PI) 0.56-0.74) versus 0.63 (95%PI 0.54-0.71). PredictCBC-2.0 was well calibrated with an observed/expected ratio at 10 years of 0.92 (95%PI 0.34-2.54). Decision curve analysis for contralateral preventive mastectomy (CPM) showed the potential clinical utility of PredictCBC-2.0 between thresholds of 4 and 12% 10-year CBC risk for BRCA1/2 mutation carriers and non-carriers.Additional genetic information beyond BRCA1/2 germline mutations improved CBC risk prediction and might help tailor clinical decision-making toward CPM or alternative preventive strategies. Identifying patients who benefit from CPM, especially in the general breast cancer population, remains challenging. |
536 | _ | _ | |a 313 - Krebsrisikofaktoren und Prävention (POF4-313) |0 G:(DE-HGF)POF4-313 |c POF4-313 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a BCAC |2 Other |
650 | _ | 7 | |a BRCA1/2 germline mutation |2 Other |
650 | _ | 7 | |a Breast Cancer Association Consortium |2 Other |
650 | _ | 7 | |a Breast cancer genetic predisposition |2 Other |
650 | _ | 7 | |a Clinical decision-making |2 Other |
650 | _ | 7 | |a Contralateral breast cancer |2 Other |
650 | _ | 7 | |a Contralateral preventive mastectomy |2 Other |
650 | _ | 7 | |a Polygenic risk score |2 Other |
650 | _ | 7 | |a Prediction performance |2 Other |
650 | _ | 7 | |a Risk prediction |2 Other |
700 | 1 | _ | |a Hooning, Maartje J |b 1 |
700 | 1 | _ | |a Hauptmann, Michael |b 2 |
700 | 1 | _ | |a Keeman, Renske |b 3 |
700 | 1 | _ | |a Heemskerk-Gerritsen, B. A. M. |b 4 |
700 | 1 | _ | |a Becher, Heiko |b 5 |
700 | 1 | _ | |a Blomqvist, Carl |b 6 |
700 | 1 | _ | |a Bojesen, Stig E |b 7 |
700 | 1 | _ | |a Bolla, Manjeet K |b 8 |
700 | 1 | _ | |a Camp, Nicola J |b 9 |
700 | 1 | _ | |a Czene, Kamila |b 10 |
700 | 1 | _ | |a Devilee, Peter |b 11 |
700 | 1 | _ | |a Eccles, Diana M |b 12 |
700 | 1 | _ | |a Fasching, Peter A |b 13 |
700 | 1 | _ | |a Figueroa, Jonine D |b 14 |
700 | 1 | _ | |a Flyger, Henrik |b 15 |
700 | 1 | _ | |a García-Closas, Montserrat |b 16 |
700 | 1 | _ | |a Haiman, Christopher A |b 17 |
700 | 1 | _ | |a Hamann, Ute |0 P:(DE-He78)537e07b3e57b16c7b214fc2242e4326b |b 18 |u dkfz |
700 | 1 | _ | |a Hopper, John L |b 19 |
700 | 1 | _ | |a Jakubowska, Anna |b 20 |
700 | 1 | _ | |a Leeuwen, Floor E |b 21 |
700 | 1 | _ | |a Lindblom, Annika |b 22 |
700 | 1 | _ | |a Lubiński, Jan |b 23 |
700 | 1 | _ | |a Margolin, Sara |b 24 |
700 | 1 | _ | |a Martinez, Maria Elena |b 25 |
700 | 1 | _ | |a Nevanlinna, Heli |b 26 |
700 | 1 | _ | |a Nevelsteen, Ines |b 27 |
700 | 1 | _ | |a Pelders, Saskia |b 28 |
700 | 1 | _ | |a Pharoah, Paul D P |b 29 |
700 | 1 | _ | |a Siesling, Sabine |b 30 |
700 | 1 | _ | |a Southey, Melissa C |b 31 |
700 | 1 | _ | |a van der Hout, Annemieke H |b 32 |
700 | 1 | _ | |a van Hest, Liselotte P |b 33 |
700 | 1 | _ | |a Chang-Claude, Jenny |0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253 |b 34 |u dkfz |
700 | 1 | _ | |a Hall, Per |b 35 |
700 | 1 | _ | |a Easton, Douglas F |b 36 |
700 | 1 | _ | |a Steyerberg, Ewout W |b 37 |
700 | 1 | _ | |a Schmidt, Marjanka K |b 38 |
773 | _ | _ | |a 10.1186/s13058-022-01567-3 |g Vol. 24, no. 1, p. 69 |0 PERI:(DE-600)2041618-0 |n 1 |p 69 |t Breast cancer research |v 24 |y 2022 |x 1465-5411 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:182208 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 18 |6 P:(DE-He78)537e07b3e57b16c7b214fc2242e4326b |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 34 |6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-313 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Krebsrisikofaktoren und Prävention |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-02 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-02 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-02-02 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-02-02 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-05-24T16:49:57Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-05-24T16:49:57Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2022-05-24T16:49:57Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2022-11-19 |
920 | 1 | _ | |0 I:(DE-He78)B070-20160331 |k B070 |l B070 Funktionelle Genomanalyse |x 0 |
920 | 1 | _ | |0 I:(DE-He78)B072-20160331 |k B072 |l Molekulargenetik des Mammakarzinoms |x 1 |
920 | 1 | _ | |0 I:(DE-He78)C020-20160331 |k C020 |l C020 Epidemiologie von Krebs |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)B070-20160331 |
980 | _ | _ | |a I:(DE-He78)B072-20160331 |
980 | _ | _ | |a I:(DE-He78)C020-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|