001     182208
005     20240917160155.0
024 7 _ |a 10.1186/s13058-022-01567-3
|2 doi
024 7 _ |a pmid:36271417
|2 pmid
024 7 _ |a 1465-5411
|2 ISSN
024 7 _ |a 1465-542X
|2 ISSN
024 7 _ |a altmetric:137567787
|2 altmetric
037 _ _ |a DKFZ-2022-02502
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Giardiello, Daniele
|b 0
245 _ _ |a PredictCBC-2.0: a contralateral breast cancer risk prediction model developed and validated in ~ 200,000 patients.
260 _ _ |a London
|c 2022
|b BioMed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1726581691_15212
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Prediction of contralateral breast cancer (CBC) risk is challenging due to moderate performances of the known risk factors. We aimed to improve our previous risk prediction model (PredictCBC) by updated follow-up and including additional risk factors.We included data from 207,510 invasive breast cancer patients participating in 23 studies. In total, 8225 CBC events occurred over a median follow-up of 10.2 years. In addition to the previously included risk factors, PredictCBC-2.0 included CHEK2 c.1100delC, a 313 variant polygenic risk score (PRS-313), body mass index (BMI), and parity. Fine and Gray regression was used to fit the model. Calibration and a time-dependent area under the curve (AUC) at 5 and 10 years were assessed to determine the performance of the models. Decision curve analysis was performed to evaluate the net benefit of PredictCBC-2.0 and previous PredictCBC models.The discrimination of PredictCBC-2.0 at 10 years was higher than PredictCBC with an AUC of 0.65 (95% prediction intervals (PI) 0.56-0.74) versus 0.63 (95%PI 0.54-0.71). PredictCBC-2.0 was well calibrated with an observed/expected ratio at 10 years of 0.92 (95%PI 0.34-2.54). Decision curve analysis for contralateral preventive mastectomy (CPM) showed the potential clinical utility of PredictCBC-2.0 between thresholds of 4 and 12% 10-year CBC risk for BRCA1/2 mutation carriers and non-carriers.Additional genetic information beyond BRCA1/2 germline mutations improved CBC risk prediction and might help tailor clinical decision-making toward CPM or alternative preventive strategies. Identifying patients who benefit from CPM, especially in the general breast cancer population, remains challenging.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a BCAC
|2 Other
650 _ 7 |a BRCA1/2 germline mutation
|2 Other
650 _ 7 |a Breast Cancer Association Consortium
|2 Other
650 _ 7 |a Breast cancer genetic predisposition
|2 Other
650 _ 7 |a Clinical decision-making
|2 Other
650 _ 7 |a Contralateral breast cancer
|2 Other
650 _ 7 |a Contralateral preventive mastectomy
|2 Other
650 _ 7 |a Polygenic risk score
|2 Other
650 _ 7 |a Prediction performance
|2 Other
650 _ 7 |a Risk prediction
|2 Other
700 1 _ |a Hooning, Maartje J
|b 1
700 1 _ |a Hauptmann, Michael
|b 2
700 1 _ |a Keeman, Renske
|b 3
700 1 _ |a Heemskerk-Gerritsen, B. A. M.
|b 4
700 1 _ |a Becher, Heiko
|b 5
700 1 _ |a Blomqvist, Carl
|b 6
700 1 _ |a Bojesen, Stig E
|b 7
700 1 _ |a Bolla, Manjeet K
|b 8
700 1 _ |a Camp, Nicola J
|b 9
700 1 _ |a Czene, Kamila
|b 10
700 1 _ |a Devilee, Peter
|b 11
700 1 _ |a Eccles, Diana M
|b 12
700 1 _ |a Fasching, Peter A
|b 13
700 1 _ |a Figueroa, Jonine D
|b 14
700 1 _ |a Flyger, Henrik
|b 15
700 1 _ |a García-Closas, Montserrat
|b 16
700 1 _ |a Haiman, Christopher A
|b 17
700 1 _ |a Hamann, Ute
|0 P:(DE-He78)537e07b3e57b16c7b214fc2242e4326b
|b 18
|u dkfz
700 1 _ |a Hopper, John L
|b 19
700 1 _ |a Jakubowska, Anna
|b 20
700 1 _ |a Leeuwen, Floor E
|b 21
700 1 _ |a Lindblom, Annika
|b 22
700 1 _ |a Lubiński, Jan
|b 23
700 1 _ |a Margolin, Sara
|b 24
700 1 _ |a Martinez, Maria Elena
|b 25
700 1 _ |a Nevanlinna, Heli
|b 26
700 1 _ |a Nevelsteen, Ines
|b 27
700 1 _ |a Pelders, Saskia
|b 28
700 1 _ |a Pharoah, Paul D P
|b 29
700 1 _ |a Siesling, Sabine
|b 30
700 1 _ |a Southey, Melissa C
|b 31
700 1 _ |a van der Hout, Annemieke H
|b 32
700 1 _ |a van Hest, Liselotte P
|b 33
700 1 _ |a Chang-Claude, Jenny
|0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
|b 34
|u dkfz
700 1 _ |a Hall, Per
|b 35
700 1 _ |a Easton, Douglas F
|b 36
700 1 _ |a Steyerberg, Ewout W
|b 37
700 1 _ |a Schmidt, Marjanka K
|b 38
773 _ _ |a 10.1186/s13058-022-01567-3
|g Vol. 24, no. 1, p. 69
|0 PERI:(DE-600)2041618-0
|n 1
|p 69
|t Breast cancer research
|v 24
|y 2022
|x 1465-5411
909 C O |p VDB
|o oai:inrepo02.dkfz.de:182208
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 18
|6 P:(DE-He78)537e07b3e57b16c7b214fc2242e4326b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 34
|6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-02
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-05-24T16:49:57Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-05-24T16:49:57Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-05-24T16:49:57Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-19
920 1 _ |0 I:(DE-He78)B070-20160331
|k B070
|l B070 Funktionelle Genomanalyse
|x 0
920 1 _ |0 I:(DE-He78)B072-20160331
|k B072
|l Molekulargenetik des Mammakarzinoms
|x 1
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B070-20160331
980 _ _ |a I:(DE-He78)B072-20160331
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21