001     182282
005     20241220120852.0
024 7 _ |a 10.1002/pst.2268
|2 doi
024 7 _ |a pmid:36285348
|2 pmid
024 7 _ |a 1539-1604
|2 ISSN
024 7 _ |a 1539-1612
|2 ISSN
024 7 _ |a altmetric:138016756
|2 altmetric
037 _ _ |a DKFZ-2022-02542
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Labrenz, Jannik
|0 P:(DE-He78)288ea89dbbad8b91534dfb0ef4dcb02d
|b 0
245 _ _ |a Performance of phase-I dose finding designs with and without a run-in intra-patient dose escalation stage.
260 _ _ |a New York, NY
|c 2023
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1678877537_29493
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #LA:C060#LA:W010# / 2023 Mar;22(2):236-247
520 _ _ |a Dose-finding designs for phase-I trials aim to determine the recommended phase-II dose (RP2D) for further phase-II drug development. If the trial includes patients for whom several lines of standard therapy failed or if the toxicity of the investigated agent does not necessarily increase with dose, optimal dose-finding designs should limit the frequency of treatment with suboptimal doses. We propose a two-stage design strategy with a run-in intra-patient dose escalation part followed by a more traditional dose-finding design. We conduct simulation studies to compare the 3 + 3 design, the Bayesian Optimal Interval Design (BOIN) and the Continual Reassessment Method (CRM) with and without intra-patient dose escalation. The endpoints are accuracy, sample size, safety, and therapeutic efficiency. For scenarios where the correct RP2D is the highest dose, inclusion of an intra-patient dose escalation stage generally increases accuracy and therapeutic efficiency. However, for scenarios where the correct RP2D is below the highest dose, intra-patient dose escalation designs lead to increased risk of overdosing and an overestimation of RP2D. The magnitude of the change in operating characteristics after including an intra-patient stage is largest for the 3 + 3 design, decreases for the BOIN and is smallest for the CRM.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a dose escalation
|2 Other
650 _ 7 |a dose-finding
|2 Other
650 _ 7 |a intra-patient
|2 Other
650 _ 7 |a maximum tolerated dose
|2 Other
650 _ 7 |a phase-I
|2 Other
700 1 _ |a Edelmann, Dominic
|0 P:(DE-He78)92820b4867c955a04f642707ecf35b40
|b 1
700 1 _ |a Heitmann, Jonas
|0 P:(DE-He78)647bd2cb06a172c109d3469e8915428d
|b 2
700 1 _ |a Salih, Helmut
|0 P:(DE-He78)15af5d9d6d8f165d5ff4dd165ffecb22
|b 3
700 1 _ |a Kopp-Schneider, Annette
|0 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
|b 4
|e Last author
700 1 _ |a Schlenk, Richard
|0 P:(DE-He78)d8a0e60e5e095f3161ee0de3712409bc
|b 5
|e Last author
|u dkfz
773 _ _ |a 10.1002/pst.2268
|g p. pst.2268
|0 PERI:(DE-600)2083706-9
|n 2
|p 236-247
|t Pharmaceutical statistics
|v 22
|y 2023
|x 1539-1604
909 C O |o oai:inrepo02.dkfz.de:182282
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)288ea89dbbad8b91534dfb0ef4dcb02d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)92820b4867c955a04f642707ecf35b40
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)647bd2cb06a172c109d3469e8915428d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)15af5d9d6d8f165d5ff4dd165ffecb22
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)d8a0e60e5e095f3161ee0de3712409bc
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2022
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHARM STAT : 2022
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-24
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-24
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-24
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
920 2 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
920 2 _ |0 I:(DE-He78)W010-20160331
|k W010
|l Klinische Studienzentrale
|x 1
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
920 1 _ |0 I:(DE-He78)TU01-20160331
|k TU01
|l DKTK TU zentral
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)TU01-20160331
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21