001     182311
005     20240229145715.0
024 7 _ |a 10.3390/cells11203309
|2 doi
024 7 _ |a pmid:36291175
|2 pmid
024 7 _ |a altmetric:137784250
|2 altmetric
037 _ _ |a DKFZ-2022-02568
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Yang, Dongyun
|0 P:(DE-He78)81bbcd4c5033f7ddd69eebd3be349e7e
|b 0
|e First author
|u dkfz
245 _ _ |a FAM57A (Family with Sequence Similarity 57 Member A) Is a Cell-Density-Regulated Protein and Promotes the Proliferation and Migration of Cervical Cancer Cells.
260 _ _ |a Basel
|c 2022
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1667214479_5048
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:F065#LA:F065#
520 _ _ |a The FAM57A (family with sequence similarity 57 member A) gene is controversially discussed to possess pro- or anti-tumorigenic potential. Here, we analyze the regulation of cellular FAM57A protein levels and study the functional role of FAM57A in HPV-positive cervical cancer cells. We find that FAM57A protein expression strongly depends on cell density, with FAM57A being readily detectable at low cell density, but undetectable at high cell density. This regulation occurs post-transcriptionally and is not mirrored by corresponding changes at the RNA level. We further show that FAM57A protein levels are highly increased in cervical cancer cells cultivated at hypoxia compared to normoxia and provide evidence that FAM57A is a hypoxia-responsive gene under control of the α-subunit of the HIF-1 (hypoxia-inducible factor-1) transcription factor. Yet, the strong relative increase of FAM57A protein levels in hypoxic cells is predominantly cell-density-dependent and occurs post-transcriptionally. Other anti-proliferative effectors besides hypoxia, such as silencing of HPV E6/E7 oncogene expression in cervical cancer cells, also result in an increase of FAM57A levels compared to untreated cells. Functional analyses reveal that FAM57A repression leads to pronounced anti-proliferative as well as anti-migratory effects in cervical cancer cells. Taken together, these results provide insights into the regulation of FAM57A protein levels and reveal that they underlie a tight cell-density-dependent control. Moreover, they identify FAM57A as a critical determinant for the phenotype of cervical cancer cells, which promotes their proliferation and migration capacities.
536 _ _ |a 316 - Infektionen, Entzündung und Krebs (POF4-316)
|0 G:(DE-HGF)POF4-316
|c POF4-316
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a FAM57A
|2 Other
650 _ 7 |a cervical cancer
|2 Other
650 _ 7 |a human papillomavirus (HPV)
|2 Other
650 _ 7 |a hypoxia
|2 Other
650 _ 7 |a Oncogene Proteins, Viral
|2 NLM Chemicals
650 _ 7 |a Papillomavirus E7 Proteins
|2 NLM Chemicals
650 _ 7 |a Repressor Proteins
|2 NLM Chemicals
650 _ 7 |a Transcription Factors
|2 NLM Chemicals
650 _ 7 |a RNA
|0 63231-63-0
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Uterine Cervical Neoplasms: metabolism
|2 MeSH
650 _ 2 |a Oncogene Proteins, Viral: genetics
|2 MeSH
650 _ 2 |a Oncogene Proteins, Viral: metabolism
|2 MeSH
650 _ 2 |a Papillomavirus E7 Proteins: genetics
|2 MeSH
650 _ 2 |a Papillomavirus E7 Proteins: metabolism
|2 MeSH
650 _ 2 |a Papillomavirus Infections
|2 MeSH
650 _ 2 |a Repressor Proteins: genetics
|2 MeSH
650 _ 2 |a Repressor Proteins: metabolism
|2 MeSH
650 _ 2 |a Transcription Factors
|2 MeSH
650 _ 2 |a Cell Proliferation
|2 MeSH
650 _ 2 |a Hypoxia
|2 MeSH
650 _ 2 |a Cell Count
|2 MeSH
650 _ 2 |a RNA
|2 MeSH
700 1 _ |a Strobel, Tobias D
|0 P:(DE-He78)0dd31e782183886a3a3728cd5a97194d
|b 1
|u dkfz
700 1 _ |a Bulkescher, Julia
|0 P:(DE-He78)c04ec6ab9480d74da506d656185ec7d2
|b 2
|u dkfz
700 1 _ |a Tessmer, Claudia
|0 P:(DE-He78)44a33c775d0e27db79f8fd9e97a99e0a
|b 3
|u dkfz
700 1 _ |a Hofmann, Ilse
|0 P:(DE-He78)0c4543046185361a644540fee0dad8b1
|b 4
|u dkfz
700 1 _ |a Hoppe-Seyler, Felix
|0 P:(DE-He78)25779f8829ab7a7650e85a4cc871e6ac
|b 5
|u dkfz
700 1 _ |a Hoppe-Seyler, Karin
|0 P:(DE-He78)97468f1980416a4376b44e701d25f24b
|b 6
|e Last author
|u dkfz
773 _ _ |a 10.3390/cells11203309
|g Vol. 11, no. 20, p. 3309 -
|0 PERI:(DE-600)2661518-6
|n 20
|p 3309
|t Cells
|v 11
|y 2022
|x 2073-4409
909 C O |o oai:inrepo02.dkfz.de:182311
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)81bbcd4c5033f7ddd69eebd3be349e7e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)0dd31e782183886a3a3728cd5a97194d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)c04ec6ab9480d74da506d656185ec7d2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)44a33c775d0e27db79f8fd9e97a99e0a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)0c4543046185361a644540fee0dad8b1
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)25779f8829ab7a7650e85a4cc871e6ac
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)97468f1980416a4376b44e701d25f24b
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-316
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Infektionen, Entzündung und Krebs
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-05-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-05-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELLS-BASEL : 2021
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-01-07T08:42:17Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-01-07T08:42:17Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-01-07T08:42:17Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-30
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-30
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CELLS-BASEL : 2021
|d 2022-11-30
920 2 _ |0 I:(DE-He78)F065-20160331
|k F065
|l F065 Molek. Therapie virusassozierter Tumore
|x 0
920 1 _ |0 I:(DE-He78)F065-20160331
|k F065
|l F065 Molek. Therapie virusassozierter Tumore
|x 0
920 1 _ |0 I:(DE-He78)W170-20160331
|k W170
|l Monoklonale Antikörper
|x 1
920 0 _ |0 I:(DE-He78)F065-20160331
|k F065
|l F065 Molek. Therapie virusassozierter Tumore
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)F065-20160331
980 _ _ |a I:(DE-He78)W170-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21