001     182334
005     20241220120852.0
024 7 _ |a 10.1002/ijc.34337
|2 doi
024 7 _ |a pmid:36305646
|2 pmid
024 7 _ |a 0020-7136
|2 ISSN
024 7 _ |a 1097-0215
|2 ISSN
024 7 _ |a altmetric:137819285
|2 altmetric
037 _ _ |a DKFZ-2022-02577
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Manoochehri, Mehdi
|0 P:(DE-He78)16b8745cffb0db0d366978d3afe17ebc
|b 0
|e First author
245 _ _ |a DNA methylation biomarkers for non-invasive detection of triple negative breast cancer using liquid biopsy.
260 _ _ |a Bognor Regis
|c 2023
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1691142620_20938
|2 PUB:(DE-HGF)
|x Review Article
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:B070#EA:B072#LA:B070#LA:B072# / 2023 Mar 1;152(5):1025-1035
520 _ _ |a Non-invasive detection of aberrant DNA methylation could provide invaluable biomarkers for earlier detection of triple negative breast cancer (TNBC) which could help clinicians with easier and more efficient treatment options. We evaluated genome-wide DNA methylation data derived from TNBC and normal breast tissues, peripheral blood of TNBC cases and controls, and reference samples of sorted blood and mammary cells. Differentially methylated regions (DMRs) between TNBC and normal breast tissues were stringently selected, verified, and externally validated. A machine-learning algorithm was applied to select the top DMRs, which then were evaluated on plasma-derived circulating cell-free DNA (cfDNA) samples of TNBC patients and healthy controls. We identified 23 DMRs accounting for the methylation profile of blood cells and reference mammary cells and then selected six top DMRs for cfDNA analysis. We quantified un-/methylated copies of these DMRs by droplet digital PCR analysis in a plasma test set from TNBC patients and healthy controls and confirmed our findings obtained on tissues. Differential cfDNA methylation was confirmed in an independent validation set of plasma samples. A methylation score combining signatures of the top three DMRs overlapping with the SPAG6, LINC10606, and TBCD/ZNF750 genes had the best capability to discriminate TNBC patients from controls (AUC=0.78 in the test set and AUC=0.74 in validation set). Our findings demonstrate the usefulness of cfDNA-based methylation signatures as non-invasive liquid biopsy markers for the diagnosis of TNBC. This article is protected by copyright. All rights reserved.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Biomarker
|2 Other
650 _ 7 |a DNA methylation
|2 Other
650 _ 7 |a Liquid biopsy
|2 Other
650 _ 7 |a Non-invasive detection
|2 Other
650 _ 7 |a Triple Negative Breast Cancer
|2 Other
700 1 _ |a Borhani, Nasim
|0 P:(DE-He78)0659c0184321ffbb893a3306e199f67e
|b 1
700 1 _ |a Gerhäuser, Clarissa
|0 P:(DE-He78)3c4679d03b730156fae20c4948722efe
|b 2
|u dkfz
700 1 _ |a Assenov, Yassen
|0 P:(DE-He78)45a6854ecf41ba2e65ca3ba0d560f14c
|b 3
700 1 _ |a Schönung, Maximilian
|0 P:(DE-He78)7f52f75aab723501c520280cebdb2c46
|b 4
|u dkfz
700 1 _ |a Hielscher, Thomas
|0 P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f
|b 5
|u dkfz
700 1 _ |a Christensen, Brock C
|b 6
700 1 _ |a Lee, Min Kyung
|b 7
700 1 _ |a Gröne, Hermann-Josef
|b 8
700 1 _ |a Lipka, Daniel
|0 P:(DE-He78)c403a040c97f91902a7d31b93859f9fc
|b 9
|u dkfz
700 1 _ |a Brüning, Thomas
|b 10
700 1 _ |a Brauch, Hiltrud
|0 0000-0001-7531-2736
|b 11
700 1 _ |a Ko, Yon-Dschun
|b 12
700 1 _ |a Hamann, Ute
|0 P:(DE-He78)537e07b3e57b16c7b214fc2242e4326b
|b 13
|e Last author
|u dkfz
773 _ _ |a 10.1002/ijc.34337
|g p. ijc.34337
|0 PERI:(DE-600)1474822-8
|n 5
|p 1025-1035
|t International journal of cancer
|v 152
|y 2023
|x 0020-7136
909 C O |o oai:inrepo02.dkfz.de:182334
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)16b8745cffb0db0d366978d3afe17ebc
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)0659c0184321ffbb893a3306e199f67e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)3c4679d03b730156fae20c4948722efe
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)45a6854ecf41ba2e65ca3ba0d560f14c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)7f52f75aab723501c520280cebdb2c46
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)c403a040c97f91902a7d31b93859f9fc
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 0000-0001-7531-2736
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)537e07b3e57b16c7b214fc2242e4326b
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2022
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-02-04
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J CANCER : 2022
|d 2023-10-21
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b INT J CANCER : 2022
|d 2023-10-21
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
920 2 _ |0 I:(DE-He78)B072-20160331
|k B072
|l Molekulargenetik des Mammakarzinoms
|x 0
920 2 _ |0 I:(DE-He78)B070-20160331
|k B070
|l B070 Funktionelle Genomanalyse
|x 1
920 1 _ |0 I:(DE-He78)B370-20160331
|k B370
|l Epigenomik
|x 0
920 1 _ |0 I:(DE-He78)B072-20160331
|k B072
|l Molekulargenetik des Mammakarzinoms
|x 1
920 1 _ |0 I:(DE-He78)B340-20160331
|k B340
|l Translationale Medizinische Onkologie
|x 2
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 3
920 1 _ |0 I:(DE-He78)TU01-20160331
|k TU01
|l DKTK Koordinierungsstelle Tübingen
|x 4
920 0 _ |0 I:(DE-He78)B072-20160331
|k B072
|l Molekulargenetik des Mammakarzinoms
|x 0
920 0 _ |0 I:(DE-He78)B070-20160331
|k B070
|l B070 Funktionelle Genomanalyse
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B370-20160331
980 _ _ |a I:(DE-He78)B072-20160331
980 _ _ |a I:(DE-He78)B340-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)TU01-20160331
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21