001     182535
005     20240229145721.0
024 7 _ |a 10.1016/j.lungcan.2022.10.011
|2 doi
024 7 _ |a pmid:36356492
|2 pmid
024 7 _ |a 0169-5002
|2 ISSN
024 7 _ |a 1872-8332
|2 ISSN
024 7 _ |a altmetric:140222414
|2 altmetric
037 _ _ |a DKFZ-2022-02727
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Bhardwaj, Megha
|0 P:(DE-He78)ac7aed57f26354e8a484b5d257f7bada
|b 0
|e First author
|u dkfz
245 _ _ |a Comparison of discrimination performance of 11 lung cancer risk models for predicting lung cancer in a prospective cohort of screening-age adults from Germany followed over 17 years.
260 _ _ |a Amsterdam [u.a.]
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1668178815_5814
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:C070#EA:C120#LA:C070#LA:C120#
520 _ _ |a Randomized trials have demonstrated considerable reduction in lung cancer (LC) mortality by screening pre-selected heavy smokers with low-dose computed tomography (LDCT). Newer screening guidelines recommend refined LC risk models for selecting the target population for screening. We aimed to evaluate and compare the discrimination performance of LC risk models and previously used trial criteria in predicting LC incidence and mortality in a large German cohort of screening-age adults. Within ESTHER, a population-based prospective cohort study conducted in Saarland, Germany, 4812 ever smokers aged 50-75 years were followed up with respect to LC incidence and mortality for up to 17 years. We quantified the performance of 11 different LC risk models by the area under the curve (AUC) and compared the proportion of correctly predicted LC cases between the best performing models and the LDCT trial criteria. Risk prediction of LC incidence in the ESTHER ever smokers was best for the Bach model, LCRAT and LCDRAT with AUCs ranging from 0.782 to 0.787, from 0.770 to 0.774, and from 0.765 to 0.771 for the follow-up time periods of cases identified at 6, 11, and 17 years, respectively. At cutoffs yielding comparable positivity rates as the LDCT trial criteria, these models would have identified between 11.8 (95% CI 3.0-20.5) and 17.6 (95% CI 10.1-25.2) percent units higher proportions of LC cases occurring during the initial 6 years of follow-up. Use of LC risk models is expected to result in substantially greater potential to identify people at highest risk of LC, suggesting enhanced potential for reducing LC mortality by LC screening.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Cancer prevention and screening
|2 Other
650 _ 7 |a LDCT
|2 Other
650 _ 7 |a Lung cancer
|2 Other
650 _ 7 |a Risk prediction
|2 Other
650 _ 7 |a Smoking exposure
|2 Other
700 1 _ |a Schöttker, Ben
|0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
|b 1
|u dkfz
700 1 _ |a Holleczek, Bernd
|b 2
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 3
|e Last author
|u dkfz
773 _ _ |a 10.1016/j.lungcan.2022.10.011
|g Vol. 174, p. 83 - 90
|0 PERI:(DE-600)2025812-4
|p 83 - 90
|t Lung cancer
|v 174
|y 2022
|x 0169-5002
909 C O |o oai:inrepo02.dkfz.de:182535
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)ac7aed57f26354e8a484b5d257f7bada
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-11
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b LUNG CANCER : 2021
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-11
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-11
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b LUNG CANCER : 2021
|d 2022-11-11
920 2 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 2 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 1
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 1
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 2
920 0 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 0 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21