000182607 001__ 182607
000182607 005__ 20240229145723.0
000182607 0247_ $$2doi$$a10.1111/bpa.13132
000182607 0247_ $$2pmid$$apmid:36377252
000182607 0247_ $$2ISSN$$a1015-6305
000182607 0247_ $$2ISSN$$a1750-3639
000182607 0247_ $$2altmetric$$aaltmetric:138434392
000182607 037__ $$aDKFZ-2022-02788
000182607 041__ $$aEnglish
000182607 082__ $$a610
000182607 1001_ $$0P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f$$aHielscher, Thomas$$b0$$eFirst author
000182607 245__ $$aClinical implementation of integrated molecular-morphologic risk prediction for meningioma.
000182607 260__ $$aOxford$$bWiley-Blackwell$$c2023
000182607 3367_ $$2DRIVER$$aarticle
000182607 3367_ $$2DataCite$$aOutput Types/Journal article
000182607 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1683728852_9236
000182607 3367_ $$2BibTeX$$aARTICLE
000182607 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000182607 3367_ $$00$$2EndNote$$aJournal Article
000182607 500__ $$a#EA:C060#LA:B300# / 2023 May;33(3):e13132
000182607 520__ $$aRisk prediction for meningioma tumors was until recently almost exclusively based on morphological features of the tumor. To improve risk prediction, multiple models have been established that incorporate morphological and molecular features for an integrated risk prediction score. One such model is the integrated molecular-morphologic meningioma integrated score (IntS), which allocates points to the histological grade, epigenetic methylation family and specific copy-number variations. After publication of the IntS, questions arose in the neuropathological community about the practical and clinical implementation of the IntS, specifically regarding the calling of CNVs, the applicability of the newly available version (v12.5) of the brain tumor classifier and the need for incorporation of TERT-promoter and CDKN2A/B status analysis in the IntS calculation. To investigate and validate these questions additional analyses of the discovery (n = 514), retrospective validation (n = 184) and prospective validation (n = 287) cohorts used for IntS discovery and validation were performed. Our findings suggest that any loss over 5% of the chromosomal arm suffices for the calling of a CNV, that input from the v12.5 classifier is as good or better than the dedicated meningioma classifier (v2.4) and that there is most likely no need for additional testing for TERT-promoter mutations and/or homozygous losses of CDKN2A/B when defining the IntS for an individual patient. The findings from this study help facilitate the clinical implementation of IntS-based risk prediction for meningioma patients.
000182607 536__ $$0G:(DE-HGF)POF4-312$$a312 - Funktionelle und strukturelle Genomforschung (POF4-312)$$cPOF4-312$$fPOF IV$$x0
000182607 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000182607 650_7 $$2Other$$abrain tumors
000182607 650_7 $$2Other$$ameningioma
000182607 650_7 $$2Other$$amolecular biomarkers
000182607 650_7 $$2Other$$arisk prediction
000182607 650_7 $$2Other$$atumor classification
000182607 7001_ $$0P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b$$aSill, Martin$$b1$$udkfz
000182607 7001_ $$0P:(DE-He78)8aad075b17d93a5636a34942bdbd7ee6$$aSievers, Philipp$$b2
000182607 7001_ $$0P:(DE-He78)d20d08adc992abdb6ccffa1686f1ba17$$aStichel, Damian$$b3
000182607 7001_ $$00000-0002-9821-0342$$aBrandner, Sebastian$$b4
000182607 7001_ $$0P:(DE-He78)551bb92841f634070997aa168d818492$$aJones, David$$b5
000182607 7001_ $$0P:(DE-He78)a8a10626a848d31e70cfd96a133cc144$$avon Deimling, Andreas$$b6
000182607 7001_ $$0P:(DE-He78)a1f4b408b9155beb2a8f7cba4d04fe88$$aSahm, Felix$$b7$$eLast author
000182607 7001_ $$00000-0002-8745-4405$$aMaas, Sybren L N$$b8
000182607 773__ $$0PERI:(DE-600)2029927-8$$a10.1111/bpa.13132$$n3$$pe13132$$tBrain pathology$$v33$$x1015-6305$$y2023
000182607 909CO $$ooai:inrepo02.dkfz.de:182607$$pVDB
000182607 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000182607 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000182607 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8aad075b17d93a5636a34942bdbd7ee6$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000182607 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)d20d08adc992abdb6ccffa1686f1ba17$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000182607 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)551bb92841f634070997aa168d818492$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000182607 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a8a10626a848d31e70cfd96a133cc144$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000182607 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a1f4b408b9155beb2a8f7cba4d04fe88$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000182607 9131_ $$0G:(DE-HGF)POF4-312$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunktionelle und strukturelle Genomforschung$$x0
000182607 9141_ $$y2022
000182607 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-02-02$$wger
000182607 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000182607 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-02
000182607 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000182607 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-09-26T13:10:13Z
000182607 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-09-26T13:10:13Z
000182607 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBRAIN PATHOL : 2022$$d2023-10-24
000182607 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-24
000182607 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-24
000182607 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-24
000182607 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-09-26T13:10:13Z
000182607 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-24
000182607 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-24
000182607 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-24
000182607 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-24
000182607 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-24
000182607 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-24
000182607 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBRAIN PATHOL : 2022$$d2023-10-24
000182607 9202_ $$0I:(DE-He78)B300-20160331$$kB300$$lKKE Neuropathologie$$x0
000182607 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0
000182607 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lB062 Pädiatrische Neuroonkologie$$x1
000182607 9201_ $$0I:(DE-He78)B300-20160331$$kB300$$lKKE Neuropathologie$$x2
000182607 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x3
000182607 9201_ $$0I:(DE-He78)B360-20160331$$kB360$$lPediatric Glioma$$x4
000182607 9200_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0
000182607 980__ $$ajournal
000182607 980__ $$aVDB
000182607 980__ $$aI:(DE-He78)C060-20160331
000182607 980__ $$aI:(DE-He78)B062-20160331
000182607 980__ $$aI:(DE-He78)B300-20160331
000182607 980__ $$aI:(DE-He78)HD01-20160331
000182607 980__ $$aI:(DE-He78)B360-20160331
000182607 980__ $$aUNRESTRICTED