001     182607
005     20240229145723.0
024 7 _ |a 10.1111/bpa.13132
|2 doi
024 7 _ |a pmid:36377252
|2 pmid
024 7 _ |a 1015-6305
|2 ISSN
024 7 _ |a 1750-3639
|2 ISSN
024 7 _ |a altmetric:138434392
|2 altmetric
037 _ _ |a DKFZ-2022-02788
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Hielscher, Thomas
|0 P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f
|b 0
|e First author
245 _ _ |a Clinical implementation of integrated molecular-morphologic risk prediction for meningioma.
260 _ _ |a Oxford
|c 2023
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1683728852_9236
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:C060#LA:B300# / 2023 May;33(3):e13132
520 _ _ |a Risk prediction for meningioma tumors was until recently almost exclusively based on morphological features of the tumor. To improve risk prediction, multiple models have been established that incorporate morphological and molecular features for an integrated risk prediction score. One such model is the integrated molecular-morphologic meningioma integrated score (IntS), which allocates points to the histological grade, epigenetic methylation family and specific copy-number variations. After publication of the IntS, questions arose in the neuropathological community about the practical and clinical implementation of the IntS, specifically regarding the calling of CNVs, the applicability of the newly available version (v12.5) of the brain tumor classifier and the need for incorporation of TERT-promoter and CDKN2A/B status analysis in the IntS calculation. To investigate and validate these questions additional analyses of the discovery (n = 514), retrospective validation (n = 184) and prospective validation (n = 287) cohorts used for IntS discovery and validation were performed. Our findings suggest that any loss over 5% of the chromosomal arm suffices for the calling of a CNV, that input from the v12.5 classifier is as good or better than the dedicated meningioma classifier (v2.4) and that there is most likely no need for additional testing for TERT-promoter mutations and/or homozygous losses of CDKN2A/B when defining the IntS for an individual patient. The findings from this study help facilitate the clinical implementation of IntS-based risk prediction for meningioma patients.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a brain tumors
|2 Other
650 _ 7 |a meningioma
|2 Other
650 _ 7 |a molecular biomarkers
|2 Other
650 _ 7 |a risk prediction
|2 Other
650 _ 7 |a tumor classification
|2 Other
700 1 _ |a Sill, Martin
|0 P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b
|b 1
|u dkfz
700 1 _ |a Sievers, Philipp
|0 P:(DE-He78)8aad075b17d93a5636a34942bdbd7ee6
|b 2
700 1 _ |a Stichel, Damian
|0 P:(DE-He78)d20d08adc992abdb6ccffa1686f1ba17
|b 3
700 1 _ |a Brandner, Sebastian
|0 0000-0002-9821-0342
|b 4
700 1 _ |a Jones, David
|0 P:(DE-He78)551bb92841f634070997aa168d818492
|b 5
700 1 _ |a von Deimling, Andreas
|0 P:(DE-He78)a8a10626a848d31e70cfd96a133cc144
|b 6
700 1 _ |a Sahm, Felix
|0 P:(DE-He78)a1f4b408b9155beb2a8f7cba4d04fe88
|b 7
|e Last author
700 1 _ |a Maas, Sybren L N
|0 0000-0002-8745-4405
|b 8
773 _ _ |a 10.1111/bpa.13132
|0 PERI:(DE-600)2029927-8
|n 3
|p e13132
|t Brain pathology
|v 33
|y 2023
|x 1015-6305
909 C O |p VDB
|o oai:inrepo02.dkfz.de:182607
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)8aad075b17d93a5636a34942bdbd7ee6
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)d20d08adc992abdb6ccffa1686f1ba17
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)551bb92841f634070997aa168d818492
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)a8a10626a848d31e70cfd96a133cc144
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)a1f4b408b9155beb2a8f7cba4d04fe88
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2022
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-26T13:10:13Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-26T13:10:13Z
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BRAIN PATHOL : 2022
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-24
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2022-09-26T13:10:13Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-24
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-24
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b BRAIN PATHOL : 2022
|d 2023-10-24
920 2 _ |0 I:(DE-He78)B300-20160331
|k B300
|l KKE Neuropathologie
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 1
920 1 _ |0 I:(DE-He78)B300-20160331
|k B300
|l KKE Neuropathologie
|x 2
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 3
920 1 _ |0 I:(DE-He78)B360-20160331
|k B360
|l Pediatric Glioma
|x 4
920 0 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a I:(DE-He78)B300-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a I:(DE-He78)B360-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21