Home > Publications database > Influence of image contrasts and reconstruction methods on the classification of multiple sclerosis-like lesions in simulated sodium magnetic resonance imaging. > print |
001 | 182640 | ||
005 | 20240229145726.0 | ||
024 | 7 | _ | |a 10.1002/mrm.29476 |2 doi |
024 | 7 | _ | |a pmid:36373186 |2 pmid |
024 | 7 | _ | |a 0740-3194 |2 ISSN |
024 | 7 | _ | |a 1522-2594 |2 ISSN |
024 | 7 | _ | |a altmetric:138515908 |2 altmetric |
037 | _ | _ | |a DKFZ-2022-02817 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Ruck, Laurent |0 0000-0002-5978-3383 |b 0 |
245 | _ | _ | |a Influence of image contrasts and reconstruction methods on the classification of multiple sclerosis-like lesions in simulated sodium magnetic resonance imaging. |
260 | _ | _ | |a New York, NY [u.a.] |c 2023 |b Wiley-Liss |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1672319100_18455 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a #LA:E020# / 2023 Mar;89(3):1102-1116 |
520 | _ | _ | |a To evaluate the classifiability of small multiple sclerosis (MS)-like lesions in simulated sodium (23 Na) MRI for different 23 Na MRI contrasts and reconstruction methods.23 Na MRI and 23 Na inversion recovery (IR) MRI of a phantom and simulated brain with and without lesions of different volumes (V = 1.3-38.2 nominal voxels) were simulated 100 times by adding Gaussian noise matching the SNR of real 3T measurements. Each simulation was reconstructed with four different reconstruction methods (Gridding without and with Hamming filter, Compressed sensing (CS) reconstruction without and with anatomical 1 H prior information). Based on the mean signals within the lesion volumes of simulations with and without lesions, receiver operating characteristics (ROC) were determined and the area under the curve (AUC) was calculated to assess the classifiability for each lesion volume.Lesions show higher classifiability in 23 Na MRI than in 23 Na IR MRI. For typical parameters and SNR of a 3T scan, the voxel normed minimal classifiable lesion volume (AUC > 0.9) is 2.8 voxels for 23 Na MRI and 19 voxels for 23 Na IR MRI, respectively. In terms of classifiability, Gridding with Hamming filter and CS without anatomical 1 H prior outperform CS reconstruction with anatomical 1 H prior.Reliability of lesion classifiability strongly depends on the lesion volume and the 23 Na MRI contrast. Additional incorporation of 1 H prior information in the CS reconstruction was not beneficial for the classification of small MS-like lesions in 23 Na MRI. |
536 | _ | _ | |a 315 - Bildgebung und Radioonkologie (POF4-315) |0 G:(DE-HGF)POF4-315 |c POF4-315 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a X-nuclei MRI |2 Other |
650 | _ | 7 | |a anatomical prior information |2 Other |
650 | _ | 7 | |a compressed sensing (CS) |2 Other |
650 | _ | 7 | |a lesion classification |2 Other |
650 | _ | 7 | |a multiple sclerosis (MS) |2 Other |
650 | _ | 7 | |a sodium (23Na) |2 Other |
700 | 1 | _ | |a Mennecke, Angelika |b 1 |
700 | 1 | _ | |a Wilferth, Tobias |0 0000-0002-2520-9025 |b 2 |
700 | 1 | _ | |a Lachner, Sebastian |b 3 |
700 | 1 | _ | |a Müller, Max |b 4 |
700 | 1 | _ | |a Egger, Nico |b 5 |
700 | 1 | _ | |a Doerfler, Arnd |b 6 |
700 | 1 | _ | |a Uder, Michael |b 7 |
700 | 1 | _ | |a Nagel, Armin |0 P:(DE-He78)054fd7a5195b75b11fbdc5c360276011 |b 8 |e Last author |u dkfz |
773 | _ | _ | |a 10.1002/mrm.29476 |g p. mrm.29476 |0 PERI:(DE-600)1493786-4 |n 3 |p 1102-1116 |t Magnetic resonance in medicine |v 89 |y 2023 |x 0740-3194 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:182640 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 8 |6 P:(DE-He78)054fd7a5195b75b11fbdc5c360276011 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-315 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Bildgebung und Radioonkologie |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-01-27 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-01-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-27 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-10-21 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MAGN RESON MED : 2022 |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2023-10-21 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-10-21 |
920 | 2 | _ | |0 I:(DE-He78)E020-20160331 |k E020 |l E020 Med. Physik in der Radiologie |x 0 |
920 | 1 | _ | |0 I:(DE-He78)E020-20160331 |k E020 |l E020 Med. Physik in der Radiologie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)E020-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|