Home > Publications database > Spatial genomics maps the structure, nature and evolution of cancer clones. > print |
001 | 182724 | ||
005 | 20240229145728.0 | ||
024 | 7 | _ | |a 10.1038/s41586-022-05425-2 |2 doi |
024 | 7 | _ | |a pmid:36352222 |2 pmid |
024 | 7 | _ | |a pmc:PMC9668746 |2 pmc |
024 | 7 | _ | |a 0028-0836 |2 ISSN |
024 | 7 | _ | |a 1476-4687 |2 ISSN |
024 | 7 | _ | |a altmetric:138217838 |2 altmetric |
037 | _ | _ | |a DKFZ-2022-02877 |
041 | _ | _ | |a English |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Lomakin, Artem |0 P:(DE-He78)5c386464ccf3e1e1ffa69db986be5be0 |b 0 |e First author |u dkfz |
245 | _ | _ | |a Spatial genomics maps the structure, nature and evolution of cancer clones. |
260 | _ | _ | |a London [u.a.] |c 2022 |b Nature Publ. Group |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1669106710_16030 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a #EA:B450# |
520 | _ | _ | |a Genome sequencing of cancers often reveals mosaics of different subclones present in the same tumour1-3. Although these are believed to arise according to the principles of somatic evolution, the exact spatial growth patterns and underlying mechanisms remain elusive4,5. Here, to address this need, we developed a workflow that generates detailed quantitative maps of genetic subclone composition across whole-tumour sections. These provide the basis for studying clonal growth patterns, and the histological characteristics, microanatomy and microenvironmental composition of each clone. The approach rests on whole-genome sequencing, followed by highly multiplexed base-specific in situ sequencing, single-cell resolved transcriptomics and dedicated algorithms to link these layers. Applying the base-specific in situ sequencing workflow to eight tissue sections from two multifocal primary breast cancers revealed intricate subclonal growth patterns that were validated by microdissection. In a case of ductal carcinoma in situ, polyclonal neoplastic expansions occurred at the macroscopic scale but segregated within microanatomical structures. Across the stages of ductal carcinoma in situ, invasive cancer and lymph node metastasis, subclone territories are shown to exhibit distinct transcriptional and histological features and cellular microenvironments. These results provide examples of the benefits afforded by spatial genomics for deciphering the mechanisms underlying cancer evolution and microenvironmental ecology. |
536 | _ | _ | |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312) |0 G:(DE-HGF)POF4-312 |c POF4-312 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 2 | |a Humans |2 MeSH |
650 | _ | 2 | |a Female |2 MeSH |
650 | _ | 2 | |a Carcinoma, Intraductal, Noninfiltrating |2 MeSH |
650 | _ | 2 | |a Mutation |2 MeSH |
650 | _ | 2 | |a Genomics |2 MeSH |
650 | _ | 2 | |a Clonal Evolution: genetics |2 MeSH |
650 | _ | 2 | |a Clone Cells |2 MeSH |
650 | _ | 2 | |a Breast Neoplasms: genetics |2 MeSH |
650 | _ | 2 | |a Tumor Microenvironment: genetics |2 MeSH |
700 | 1 | _ | |a Svedlund, Jessica |b 1 |
700 | 1 | _ | |a Strell, Carina |b 2 |
700 | 1 | _ | |a Gataric, Milana |b 3 |
700 | 1 | _ | |a Shmatko, Artem |0 P:(DE-He78)09d6c35e975cb490a4532eb5b04ccda2 |b 4 |u dkfz |
700 | 1 | _ | |a Rukhovich, Gleb |0 P:(DE-He78)5f0460f01de6e6633ab2f2253a8998dc |b 5 |u dkfz |
700 | 1 | _ | |a Park, Jun Sung |0 0000-0001-7149-6769 |b 6 |
700 | 1 | _ | |a Ju, Young Seok |0 0000-0002-5514-4189 |b 7 |
700 | 1 | _ | |a Dentro, Stefan |0 P:(DE-He78)40af5fd3ec583f9dc5da1c7c7e00524f |b 8 |u dkfz |
700 | 1 | _ | |a Kleshchevnikov, Vitalii |b 9 |
700 | 1 | _ | |a Vaskivskyi, Vasyl |0 0000-0002-4080-4965 |b 10 |
700 | 1 | _ | |a Li, Tong |0 0000-0002-8240-4476 |b 11 |
700 | 1 | _ | |a Bayraktar, Omer Ali |0 0000-0001-6055-277X |b 12 |
700 | 1 | _ | |a Pinder, Sarah |0 0000-0003-4167-8910 |b 13 |
700 | 1 | _ | |a Richardson, Andrea L |0 0000-0001-5221-1094 |b 14 |
700 | 1 | _ | |a Santagata, Sandro |0 0000-0002-7528-9668 |b 15 |
700 | 1 | _ | |a Campbell, Peter J |0 0000-0002-3921-0510 |b 16 |
700 | 1 | _ | |a Russnes, Hege |b 17 |
700 | 1 | _ | |a Gerstung, Moritz |0 P:(DE-He78)bf8843f36606c8735a840f6278fa1e90 |b 18 |u dkfz |
700 | 1 | _ | |a Nilsson, Mats |0 0000-0001-9985-0387 |b 19 |
700 | 1 | _ | |a Yates, Lucy R |0 0000-0003-4519-7794 |b 20 |
773 | _ | _ | |a 10.1038/s41586-022-05425-2 |g Vol. 611, no. 7936, p. 594 - 602 |0 PERI:(DE-600)1413423-8 |n 7936 |p 594 - 602 |t Nature |v 611 |y 2022 |x 0028-0836 |
909 | C | O | |o oai:inrepo02.dkfz.de:182724 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)5c386464ccf3e1e1ffa69db986be5be0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 4 |6 P:(DE-He78)09d6c35e975cb490a4532eb5b04ccda2 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 5 |6 P:(DE-He78)5f0460f01de6e6633ab2f2253a8998dc |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 6 |6 0000-0001-7149-6769 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 8 |6 P:(DE-He78)40af5fd3ec583f9dc5da1c7c7e00524f |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 18 |6 P:(DE-He78)bf8843f36606c8735a840f6278fa1e90 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-312 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Funktionelle und strukturelle Genomforschung |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1200 |2 StatID |b Chemical Reactions |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1210 |2 StatID |b Index Chemicus |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-01-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-27 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NATURE : 2021 |d 2022-11-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-29 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2022-11-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2022-11-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2022-11-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-29 |
915 | _ | _ | |a IF >= 60 |0 StatID:(DE-HGF)9960 |2 StatID |b NATURE : 2021 |d 2022-11-29 |
920 | 1 | _ | |0 I:(DE-He78)B450-20160331 |k B450 |l Künstl. Intelligenz in der Onkologie |x 0 |
920 | 0 | _ | |0 I:(DE-He78)B450-20160331 |k B450 |l Künstl. Intelligenz in der Onkologie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)B450-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|