001     182724
005     20240229145728.0
024 7 _ |a 10.1038/s41586-022-05425-2
|2 doi
024 7 _ |a pmid:36352222
|2 pmid
024 7 _ |a pmc:PMC9668746
|2 pmc
024 7 _ |a 0028-0836
|2 ISSN
024 7 _ |a 1476-4687
|2 ISSN
024 7 _ |a altmetric:138217838
|2 altmetric
037 _ _ |a DKFZ-2022-02877
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Lomakin, Artem
|0 P:(DE-He78)5c386464ccf3e1e1ffa69db986be5be0
|b 0
|e First author
|u dkfz
245 _ _ |a Spatial genomics maps the structure, nature and evolution of cancer clones.
260 _ _ |a London [u.a.]
|c 2022
|b Nature Publ. Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1669106710_16030
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:B450#
520 _ _ |a Genome sequencing of cancers often reveals mosaics of different subclones present in the same tumour1-3. Although these are believed to arise according to the principles of somatic evolution, the exact spatial growth patterns and underlying mechanisms remain elusive4,5. Here, to address this need, we developed a workflow that generates detailed quantitative maps of genetic subclone composition across whole-tumour sections. These provide the basis for studying clonal growth patterns, and the histological characteristics, microanatomy and microenvironmental composition of each clone. The approach rests on whole-genome sequencing, followed by highly multiplexed base-specific in situ sequencing, single-cell resolved transcriptomics and dedicated algorithms to link these layers. Applying the base-specific in situ sequencing workflow to eight tissue sections from two multifocal primary breast cancers revealed intricate subclonal growth patterns that were validated by microdissection. In a case of ductal carcinoma in situ, polyclonal neoplastic expansions occurred at the macroscopic scale but segregated within microanatomical structures. Across the stages of ductal carcinoma in situ, invasive cancer and lymph node metastasis, subclone territories are shown to exhibit distinct transcriptional and histological features and cellular microenvironments. These results provide examples of the benefits afforded by spatial genomics for deciphering the mechanisms underlying cancer evolution and microenvironmental ecology.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Carcinoma, Intraductal, Noninfiltrating
|2 MeSH
650 _ 2 |a Mutation
|2 MeSH
650 _ 2 |a Genomics
|2 MeSH
650 _ 2 |a Clonal Evolution: genetics
|2 MeSH
650 _ 2 |a Clone Cells
|2 MeSH
650 _ 2 |a Breast Neoplasms: genetics
|2 MeSH
650 _ 2 |a Tumor Microenvironment: genetics
|2 MeSH
700 1 _ |a Svedlund, Jessica
|b 1
700 1 _ |a Strell, Carina
|b 2
700 1 _ |a Gataric, Milana
|b 3
700 1 _ |a Shmatko, Artem
|0 P:(DE-He78)09d6c35e975cb490a4532eb5b04ccda2
|b 4
|u dkfz
700 1 _ |a Rukhovich, Gleb
|0 P:(DE-He78)5f0460f01de6e6633ab2f2253a8998dc
|b 5
|u dkfz
700 1 _ |a Park, Jun Sung
|0 0000-0001-7149-6769
|b 6
700 1 _ |a Ju, Young Seok
|0 0000-0002-5514-4189
|b 7
700 1 _ |a Dentro, Stefan
|0 P:(DE-He78)40af5fd3ec583f9dc5da1c7c7e00524f
|b 8
|u dkfz
700 1 _ |a Kleshchevnikov, Vitalii
|b 9
700 1 _ |a Vaskivskyi, Vasyl
|0 0000-0002-4080-4965
|b 10
700 1 _ |a Li, Tong
|0 0000-0002-8240-4476
|b 11
700 1 _ |a Bayraktar, Omer Ali
|0 0000-0001-6055-277X
|b 12
700 1 _ |a Pinder, Sarah
|0 0000-0003-4167-8910
|b 13
700 1 _ |a Richardson, Andrea L
|0 0000-0001-5221-1094
|b 14
700 1 _ |a Santagata, Sandro
|0 0000-0002-7528-9668
|b 15
700 1 _ |a Campbell, Peter J
|0 0000-0002-3921-0510
|b 16
700 1 _ |a Russnes, Hege
|b 17
700 1 _ |a Gerstung, Moritz
|0 P:(DE-He78)bf8843f36606c8735a840f6278fa1e90
|b 18
|u dkfz
700 1 _ |a Nilsson, Mats
|0 0000-0001-9985-0387
|b 19
700 1 _ |a Yates, Lucy R
|0 0000-0003-4519-7794
|b 20
773 _ _ |a 10.1038/s41586-022-05425-2
|g Vol. 611, no. 7936, p. 594 - 602
|0 PERI:(DE-600)1413423-8
|n 7936
|p 594 - 602
|t Nature
|v 611
|y 2022
|x 0028-0836
909 C O |o oai:inrepo02.dkfz.de:182724
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)5c386464ccf3e1e1ffa69db986be5be0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)09d6c35e975cb490a4532eb5b04ccda2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)5f0460f01de6e6633ab2f2253a8998dc
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 0000-0001-7149-6769
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)40af5fd3ec583f9dc5da1c7c7e00524f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 18
|6 P:(DE-He78)bf8843f36606c8735a840f6278fa1e90
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NATURE : 2021
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-29
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-29
915 _ _ |a IF >= 60
|0 StatID:(DE-HGF)9960
|2 StatID
|b NATURE : 2021
|d 2022-11-29
920 1 _ |0 I:(DE-He78)B450-20160331
|k B450
|l Künstl. Intelligenz in der Onkologie
|x 0
920 0 _ |0 I:(DE-He78)B450-20160331
|k B450
|l Künstl. Intelligenz in der Onkologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B450-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21