001     182764
005     20240229145730.0
024 7 _ |a 10.1038/s41587-022-01551-4
|2 doi
024 7 _ |a pmid:36424487
|2 pmid
024 7 _ |a 0733-222X
|2 ISSN
024 7 _ |a 1087-0156
|2 ISSN
024 7 _ |a 1546-1696
|2 ISSN
024 7 _ |a 2331-3684
|2 ISSN
024 7 _ |a altmetric:138912086
|2 altmetric
037 _ _ |a DKFZ-2022-02904
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Jeong, Hyobin
|0 0000-0002-1526-3343
|b 0
245 _ _ |a Functional analysis of structural variants in single cells using Strand-seq.
260 _ _ |a New York, NY
|c 2023
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1686835510_10295
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #LA:B480# / 2023 Jun;41(6):832-844
520 _ _ |a Somatic structural variants (SVs) are widespread in cancer, but their impact on disease evolution is understudied due to a lack of methods to directly characterize their functional consequences. We present a computational method, scNOVA, which uses Strand-seq to perform haplotype-aware integration of SV discovery and molecular phenotyping in single cells by using nucleosome occupancy to infer gene expression as a readout. Application to leukemias and cell lines identifies local effects of copy-balanced rearrangements on gene deregulation, and consequences of SVs on aberrant signaling pathways in subclones. We discovered distinct SV subclones with dysregulated Wnt signaling in a chronic lymphocytic leukemia patient. We further uncovered the consequences of subclonal chromothripsis in T cell acute lymphoblastic leukemia, which revealed c-Myb activation, enrichment of a primitive cell state and informed successful targeting of the subclone in cell culture, using a Notch inhibitor. By directly linking SVs to their functional effects, scNOVA enables systematic single-cell multiomic studies of structural variation in heterogeneous cell populations.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Grimes, Karen
|0 0000-0002-4805-2366
|b 1
700 1 _ |a Rauwolf, Kerstin K
|b 2
700 1 _ |a Bruch, Peter-Martin
|0 0000-0002-9992-3109
|b 3
700 1 _ |a Rausch, Tobias
|0 0000-0001-5773-5620
|b 4
700 1 _ |a Hasenfeld, Patrick
|b 5
700 1 _ |a Benito, Eva
|b 6
700 1 _ |a Roider, Tobias
|0 0000-0002-6973-3531
|b 7
700 1 _ |a Sabarinathan, Radhakrishnan
|b 8
700 1 _ |a Porubsky, David
|0 0000-0001-8414-8966
|b 9
700 1 _ |a Herbst, Sophie A
|0 0000-0001-8502-0366
|b 10
700 1 _ |a Erarslan-Uysal, Büşra
|b 11
700 1 _ |a Jann, Johann-Christoph
|0 0000-0003-2200-0151
|b 12
700 1 _ |a Marschall, Tobias
|0 0000-0002-9376-1030
|b 13
700 1 _ |a Nowak, Daniel
|b 14
700 1 _ |a Bourquin, Jean-Pierre
|b 15
700 1 _ |a Kulozik, Andreas E
|0 0000-0003-1953-0848
|b 16
700 1 _ |a Dietrich, Sascha
|0 P:(DE-He78)6333b389d0abc96ef7f2f6e049a8f8c4
|b 17
|u dkfz
700 1 _ |a Bornhauser, Beat
|0 0000-0003-2890-3191
|b 18
700 1 _ |a Sanders, Ashley D
|0 0000-0003-3945-0677
|b 19
700 1 _ |a Korbel, Jan
|0 P:(DE-He78)372b77c2acf8604690a6a325a4e89287
|b 20
|e Last author
|u dkfz
773 _ _ |a 10.1038/s41587-022-01551-4
|0 PERI:(DE-600)1494943-X
|n 6
|p 832-844
|t Nature biotechnology
|v 41
|y 2023
|x 0733-222X
909 C O |p VDB
|o oai:inrepo02.dkfz.de:182764
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 17
|6 P:(DE-He78)6333b389d0abc96ef7f2f6e049a8f8c4
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 20
|6 P:(DE-He78)372b77c2acf8604690a6a325a4e89287
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT BIOTECHNOL : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2023-10-21
915 _ _ |a IF >= 40
|0 StatID:(DE-HGF)9940
|2 StatID
|b NAT BIOTECHNOL : 2022
|d 2023-10-21
920 2 _ |0 I:(DE-He78)B480-20160331
|k B480
|l Mechanismen der genetischen Variation und Datenwissenschaft
|x 0
920 1 _ |0 I:(DE-He78)B480-20160331
|k B480
|l Mechanismen der genetischen Variation und Datenwissenschaft
|x 0
920 1 _ |0 I:(DE-He78)B340-20160331
|k B340
|l Translationale Medizinische Onkologie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B480-20160331
980 _ _ |a I:(DE-He78)B340-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21