000182780 001__ 182780
000182780 005__ 20240229145730.0
000182780 0247_ $$2doi$$a10.1038/s42003-022-04236-5
000182780 0247_ $$2pmid$$apmid:36435836
000182780 0247_ $$2altmetric$$aaltmetric:139006407
000182780 037__ $$aDKFZ-2022-02912
000182780 041__ $$aEnglish
000182780 082__ $$a570
000182780 1001_ $$aLi, Aijun$$b0
000182780 245__ $$aMesenchymal-endothelial nexus in breast cancer spheroids induces vasculogenesis and local invasion in a CAM model.
000182780 260__ $$aLondon$$bSpringer Nature$$c2022
000182780 3367_ $$2DRIVER$$aarticle
000182780 3367_ $$2DataCite$$aOutput Types/Journal article
000182780 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1669638454_21154
000182780 3367_ $$2BibTeX$$aARTICLE
000182780 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000182780 3367_ $$00$$2EndNote$$aJournal Article
000182780 520__ $$aInterplay between non-cancerous cells (immune, fibroblasts, mesenchymal stromal cells (MSC), and endothelial cells (EC)) has been identified as vital in driving tumor progression. As studying such interactions in vivo is challenging, ex vivo systems that can recapitulate in vivo scenarios can aid in unraveling the factors impacting tumorigenesis and metastasis. Using the synthetic tumor microenvironment mimics (STEMs)-a spheroid system composed of breast cancer cells (BCC) with defined human MSC and EC fractions, here we show that EC organization into vascular structures is BC phenotype dependent, and independent of ERα expression in epithelial cancer cells, and involves MSC-mediated Notch1 signaling. In a 3D-bioprinted model system to mimic local invasion, MDA STEMs collectively respond to serum gradient and form invading cell clusters. STEMs grown on chick chorioallantoic membrane undergo local invasion to form CAM tumors that can anastomose with host vasculature and bear the typical hallmarks of human BC and this process requires both EC and MSC. This study provides a framework for developing well-defined in vitro systems, including patient-derived xenografts that recapitulate in vivo events, to investigate heterotypic cell interactions in tumors, to identify factors promoting tumor metastasis-related events, and possibly drug screening in the context of personalized medicine.
000182780 536__ $$0G:(DE-HGF)POF4-311$$a311 - Zellbiologie und Tumorbiologie (POF4-311)$$cPOF4-311$$fPOF IV$$x0
000182780 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000182780 7001_ $$aMuenst, Simone$$b1
000182780 7001_ $$00000-0001-6576-8158$$aHoffman, Julius$$b2
000182780 7001_ $$aStarck, Laurent$$b3
000182780 7001_ $$aSarem, Melika$$b4
000182780 7001_ $$0P:(DE-He78)039283a5d51058ec79156d0ef67132da$$aFischer, Andreas$$b5$$udkfz
000182780 7001_ $$00000-0002-7570-3902$$aHutter, Gregor$$b6
000182780 7001_ $$00000-0001-5125-9678$$aShastri, V Prasad$$b7
000182780 773__ $$0PERI:(DE-600)2919698-X$$a10.1038/s42003-022-04236-5$$gVol. 5, no. 1, p. 1303$$n1$$p1303$$tCommunications biology$$v5$$x2399-3642$$y2022
000182780 909CO $$ooai:inrepo02.dkfz.de:182780$$pVDB
000182780 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)039283a5d51058ec79156d0ef67132da$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000182780 9131_ $$0G:(DE-HGF)POF4-311$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vZellbiologie und Tumorbiologie$$x0
000182780 9141_ $$y2022
000182780 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-06-15
000182780 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-06-15
000182780 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-06-15
000182780 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-06-15
000182780 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-06-15
000182780 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-06-15
000182780 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMMUN BIOL : 2021$$d2022-11-12
000182780 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000182780 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000182780 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-10-13T14:52:02Z
000182780 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-10-13T14:52:02Z
000182780 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-10-13T14:52:02Z
000182780 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000182780 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000182780 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000182780 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000182780 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-12
000182780 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-12
000182780 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-12
000182780 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCOMMUN BIOL : 2021$$d2022-11-12
000182780 9201_ $$0I:(DE-He78)A270-20160331$$kA270$$lA270 Vaskuläre Signaltransduktion und Krebs$$x0
000182780 980__ $$ajournal
000182780 980__ $$aVDB
000182780 980__ $$aI:(DE-He78)A270-20160331
000182780 980__ $$aUNRESTRICTED