000182844 001__ 182844
000182844 005__ 20240229145733.0
000182844 0247_ $$2doi$$a10.1016/j.celrep.2022.111734
000182844 0247_ $$2pmid$$apmid:36450251
000182844 0247_ $$2ISSN$$a2211-1247
000182844 0247_ $$2ISSN$$a2639-1856
000182844 0247_ $$2altmetric$$aaltmetric:139360503
000182844 037__ $$aDKFZ-2022-02969
000182844 041__ $$aEnglish
000182844 082__ $$a610
000182844 1001_ $$aMashaghi, Alireza$$b0
000182844 245__ $$aDirect observation of Hsp90-induced compaction in a protein chain.
000182844 260__ $$a[New York, NY]$$bElsevier$$c2022
000182844 3367_ $$2DRIVER$$aarticle
000182844 3367_ $$2DataCite$$aOutput Types/Journal article
000182844 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1669903821_15643
000182844 3367_ $$2BibTeX$$aARTICLE
000182844 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000182844 3367_ $$00$$2EndNote$$aJournal Article
000182844 500__ $$aDKFZ-ZMBH Alliance
000182844 520__ $$aThe chaperone heat shock protein 90 (Hsp90) is well known to undergo important conformational changes, which depend on nucleotide and substrate interactions. Conversely, how the conformations of its unstable and disordered substrates are affected by Hsp90 is difficult to address experimentally yet is central to its function. Here, using optical tweezers, we find that Hsp90 promotes local contractions in unfolded chains that drive their global compaction down to dimensions of folded states. This compaction has a gradual nature while showing small steps, is stimulated by ATP, and performs mechanical work against counteracting forces that expand the chain dimensions. The Hsp90 interactions suppress the formation of larger-scale folded, misfolded, and aggregated structures. The observations support a model in which Hsp90 alters client conformations directly by promoting local intra-chain interactions while suppressing distant ones. We conjecture that chain compaction may be central to how Hsp90 protects unstable clients and cooperates with Hsp70.
000182844 536__ $$0G:(DE-HGF)POF4-311$$a311 - Zellbiologie und Tumorbiologie (POF4-311)$$cPOF4-311$$fPOF IV$$x0
000182844 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000182844 650_7 $$2Other$$aCP: Molecular biology
000182844 650_7 $$2Other$$aHSP90
000182844 650_7 $$2Other$$achaperone
000182844 650_7 $$2Other$$aconformational heterogeneity
000182844 650_7 $$2Other$$aoptical tweezers
000182844 650_7 $$2Other$$aprotein chain compaction
000182844 7001_ $$aMoayed, Fatemeh$$b1
000182844 7001_ $$aKoers, Eline J$$b2
000182844 7001_ $$aZheng, Yang$$b3
000182844 7001_ $$aTill, Katharina$$b4
000182844 7001_ $$0P:(DE-He78)8b9aa336210db1592efa7400628e5a46$$aKramer, Günter$$b5$$udkfz
000182844 7001_ $$aMayer, Matthias P$$b6
000182844 7001_ $$aTans, Sander J$$b7
000182844 773__ $$0PERI:(DE-600)2649101-1$$a10.1016/j.celrep.2022.111734$$gVol. 41, no. 9, p. 111734 -$$n9$$p111734 $$tCell reports$$v41$$x2211-1247$$y2022
000182844 909CO $$ooai:inrepo02.dkfz.de:182844$$pVDB
000182844 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8b9aa336210db1592efa7400628e5a46$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000182844 9131_ $$0G:(DE-HGF)POF4-311$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vZellbiologie und Tumorbiologie$$x0
000182844 9141_ $$y2022
000182844 915__ $$0LIC:(DE-HGF)CCBYNCNDNV$$2V:(DE-HGF)$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND (No Version)$$bDOAJ$$d2021-02-03
000182844 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000182844 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-03
000182844 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000182844 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-03
000182844 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-03
000182844 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL REP : 2021$$d2022-11-17
000182844 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17
000182844 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-17
000182844 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-26T13:08:57Z
000182844 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-26T13:08:57Z
000182844 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-01-26T13:08:57Z
000182844 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-17
000182844 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-17
000182844 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-17
000182844 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCELL REP : 2021$$d2022-11-17
000182844 9201_ $$0I:(DE-He78)A250-20160331$$kA250$$lA250 Chaperone und Proteasen$$x0
000182844 980__ $$ajournal
000182844 980__ $$aVDB
000182844 980__ $$aI:(DE-He78)A250-20160331
000182844 980__ $$aUNRESTRICTED