000182896 001__ 182896
000182896 005__ 20240229145735.0
000182896 0247_ $$2doi$$a10.7554/eLife.83299
000182896 0247_ $$2pmid$$apmid:36469462
000182896 0247_ $$2altmetric$$aaltmetric:139762234
000182896 037__ $$aDKFZ-2022-02999
000182896 041__ $$aEnglish
000182896 082__ $$a600
000182896 1001_ $$00000-0001-6164-5134$$aMiyazawa, Hidenobu$$b0
000182896 245__ $$aGlycolytic flux-signaling controls mouse embryo mesoderm development.
000182896 260__ $$aCambridge$$beLife Sciences Publications$$c2022
000182896 3367_ $$2DRIVER$$aarticle
000182896 3367_ $$2DataCite$$aOutput Types/Journal article
000182896 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1670414875_3299
000182896 3367_ $$2BibTeX$$aARTICLE
000182896 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000182896 3367_ $$00$$2EndNote$$aJournal Article
000182896 500__ $$a#EA:A410#
000182896 520__ $$aHow cellular metabolic state impacts cellular programs is a fundamental, unresolved question. Here we investigated how glycolytic flux impacts embryonic development, using presomitic mesoderm (PSM) patterning as the experimental model. First, we identified fructose 1,6-bisphosphate (FBP) as an in vivo sentinel metabolite that mirrors glycolytic flux within PSM cells of post-implantation mouse embryos. We found that medium-supplementation with FBP, but not with other glycolytic metabolites, such as fructose 6-phosphate and 3-phosphoglycerate, impaired mesoderm segmentation. To genetically manipulate glycolytic flux and FBP levels, we generated a mouse model enabling the conditional overexpression of dominant active, cytoplasmic PFKFB3 (cytoPFKFB3). Overexpression of cytoPFKFB3 indeed led to increased glycolytic flux/FBP levels and caused an impairment of mesoderm segmentation, paralleled by the downregulation of Wnt-signaling, reminiscent of the effects seen upon FBP-supplementation. To probe for mechanisms underlying glycolytic flux-signaling, we performed subcellular proteome analysis and revealed that cytoPFKFB3 overexpression altered subcellular localization of certain proteins, including glycolytic enzymes, in PSM cells. Specifically, we revealed that FBP supplementation caused depletion of Pfkl and Aldoa from the nuclear-soluble fraction. Combined, we propose that FBP functions as a flux-signaling metabolite connecting glycolysis and PSM patterning, potentially through modulating subcellular protein localization.
000182896 536__ $$0G:(DE-HGF)POF4-311$$a311 - Zellbiologie und Tumorbiologie (POF4-311)$$cPOF4-311$$fPOF IV$$x0
000182896 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000182896 650_7 $$2Other$$adevelopmental biology
000182896 650_7 $$2Other$$amouse
000182896 7001_ $$0P:(DE-He78)7b7131e0870c28d432e48873d295460f$$aSnaebjörnsson, Marteinn Thor$$b1$$eFirst author$$udkfz
000182896 7001_ $$00000-0003-2856-7052$$aPrior, Nicole$$b2
000182896 7001_ $$aKafkia, Eleni$$b3
000182896 7001_ $$00000-0002-8534-2530$$aHammarén, Henrik M$$b4
000182896 7001_ $$aTsuchida-Straeten, Nobuko$$b5
000182896 7001_ $$00000-0002-6166-8640$$aPatil, Kiran R$$b6
000182896 7001_ $$00000-0002-7397-1321$$aBeck, Martin$$b7
000182896 7001_ $$00000-0003-3487-9239$$aAulehla, Alexander$$b8
000182896 773__ $$0PERI:(DE-600)2687154-3$$a10.7554/eLife.83299$$gVol. 11, p. e83299$$pe83299$$teLife$$v11$$x2050-084X$$y2022
000182896 909CO $$ooai:inrepo02.dkfz.de:182896$$pVDB
000182896 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7b7131e0870c28d432e48873d295460f$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000182896 9131_ $$0G:(DE-HGF)POF4-311$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vZellbiologie und Tumorbiologie$$x0
000182896 9141_ $$y2022
000182896 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-02-03
000182896 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000182896 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-03
000182896 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000182896 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-03
000182896 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-03
000182896 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELIFE : 2021$$d2022-11-23
000182896 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-23
000182896 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-23
000182896 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-09-23T12:20:44Z
000182896 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-09-23T12:20:44Z
000182896 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-09-23T12:20:44Z
000182896 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-23
000182896 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-23
000182896 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-23
000182896 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-23
000182896 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-23
000182896 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-23
000182896 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bELIFE : 2021$$d2022-11-23
000182896 9201_ $$0I:(DE-He78)A410-20160331$$kA410$$lMetabolismus und Microenvironment$$x0
000182896 9200_ $$0I:(DE-He78)A410-20160331$$kA410$$lMetabolismus und Microenvironment$$x0
000182896 980__ $$ajournal
000182896 980__ $$aVDB
000182896 980__ $$aI:(DE-He78)A410-20160331
000182896 980__ $$aUNRESTRICTED