001     182896
005     20240229145735.0
024 7 _ |a 10.7554/eLife.83299
|2 doi
024 7 _ |a pmid:36469462
|2 pmid
024 7 _ |a altmetric:139762234
|2 altmetric
037 _ _ |a DKFZ-2022-02999
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Miyazawa, Hidenobu
|0 0000-0001-6164-5134
|b 0
245 _ _ |a Glycolytic flux-signaling controls mouse embryo mesoderm development.
260 _ _ |a Cambridge
|c 2022
|b eLife Sciences Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1670414875_3299
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:A410#
520 _ _ |a How cellular metabolic state impacts cellular programs is a fundamental, unresolved question. Here we investigated how glycolytic flux impacts embryonic development, using presomitic mesoderm (PSM) patterning as the experimental model. First, we identified fructose 1,6-bisphosphate (FBP) as an in vivo sentinel metabolite that mirrors glycolytic flux within PSM cells of post-implantation mouse embryos. We found that medium-supplementation with FBP, but not with other glycolytic metabolites, such as fructose 6-phosphate and 3-phosphoglycerate, impaired mesoderm segmentation. To genetically manipulate glycolytic flux and FBP levels, we generated a mouse model enabling the conditional overexpression of dominant active, cytoplasmic PFKFB3 (cytoPFKFB3). Overexpression of cytoPFKFB3 indeed led to increased glycolytic flux/FBP levels and caused an impairment of mesoderm segmentation, paralleled by the downregulation of Wnt-signaling, reminiscent of the effects seen upon FBP-supplementation. To probe for mechanisms underlying glycolytic flux-signaling, we performed subcellular proteome analysis and revealed that cytoPFKFB3 overexpression altered subcellular localization of certain proteins, including glycolytic enzymes, in PSM cells. Specifically, we revealed that FBP supplementation caused depletion of Pfkl and Aldoa from the nuclear-soluble fraction. Combined, we propose that FBP functions as a flux-signaling metabolite connecting glycolysis and PSM patterning, potentially through modulating subcellular protein localization.
536 _ _ |a 311 - Zellbiologie und Tumorbiologie (POF4-311)
|0 G:(DE-HGF)POF4-311
|c POF4-311
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a developmental biology
|2 Other
650 _ 7 |a mouse
|2 Other
700 1 _ |a Snaebjörnsson, Marteinn Thor
|0 P:(DE-He78)7b7131e0870c28d432e48873d295460f
|b 1
|e First author
|u dkfz
700 1 _ |a Prior, Nicole
|0 0000-0003-2856-7052
|b 2
700 1 _ |a Kafkia, Eleni
|b 3
700 1 _ |a Hammarén, Henrik M
|0 0000-0002-8534-2530
|b 4
700 1 _ |a Tsuchida-Straeten, Nobuko
|b 5
700 1 _ |a Patil, Kiran R
|0 0000-0002-6166-8640
|b 6
700 1 _ |a Beck, Martin
|0 0000-0002-7397-1321
|b 7
700 1 _ |a Aulehla, Alexander
|0 0000-0003-3487-9239
|b 8
773 _ _ |a 10.7554/eLife.83299
|g Vol. 11, p. e83299
|0 PERI:(DE-600)2687154-3
|p e83299
|t eLife
|v 11
|y 2022
|x 2050-084X
909 C O |o oai:inrepo02.dkfz.de:182896
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)7b7131e0870c28d432e48873d295460f
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-311
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Zellbiologie und Tumorbiologie
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELIFE : 2021
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-23T12:20:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-23T12:20:44Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-09-23T12:20:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-23
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2022-11-23
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ELIFE : 2021
|d 2022-11-23
920 1 _ |0 I:(DE-He78)A410-20160331
|k A410
|l Metabolismus und Microenvironment
|x 0
920 0 _ |0 I:(DE-He78)A410-20160331
|k A410
|l Metabolismus und Microenvironment
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A410-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21