000186337 001__ 186337
000186337 005__ 20240229145743.0
000186337 0247_ $$2doi$$a10.1038/s41420-022-01274-0
000186337 0247_ $$2pmid$$apmid:36477080
000186337 0247_ $$2pmc$$apmc:PMC9729291
000186337 0247_ $$2altmetric$$aaltmetric:139918659
000186337 037__ $$aDKFZ-2022-03105
000186337 041__ $$aEnglish
000186337 082__ $$a610
000186337 1001_ $$0P:(DE-He78)a1a1c4dbebfbcb0569e5142c2f9c8de2$$aVit, Gianmatteo$$b0$$eFirst author
000186337 245__ $$aHuman SLFN5 and its Xenopus Laevis ortholog regulate entry into mitosis and oocyte meiotic resumption.
000186337 260__ $$aLondon$$bNature Publishing Group$$c2022
000186337 3367_ $$2DRIVER$$aarticle
000186337 3367_ $$2DataCite$$aOutput Types/Journal article
000186337 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1671444595_16478
000186337 3367_ $$2BibTeX$$aARTICLE
000186337 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000186337 3367_ $$00$$2EndNote$$aJournal Article
000186337 500__ $$a#EA:A360#LA:A360#  /  DKFZ-ZMBH Alliance
000186337 520__ $$aThe Schlafen gene family was first described in mice as a regulator of thymocyte development. Further studies showed involvement of human orthologs in different processes related with viral replication, cellular proliferation, and differentiation. In recent years, a new role for human Slfn11 in DNA replication and chromatin remodeling was described. As commonly observed in many gene families, Slfn paralogs show a tissue-specific expression. This made it difficult to reach conclusions which can be valid in different biological models regarding the function of the different Schlafen proteins. In the present study, we investigate the involvement of SLFN5 in cell-cycle regulation and cell proliferation. A careful analysis of SLFN5 expression revealed that SLFN5 is highly expressed in proliferating tissues and that the protein is ubiquitously present in all the tissues and cell line models we analyzed. Very interestingly, SLFN5 expression oscillates during cell cycle, peaking during S phase. The fact that SLFN5 interacts with protein phosphatase 2A and that SLFN5 depletion causes cell cycle arrest and cellular apoptosis, suggests a direct involvement of this human paralog in cell cycle progression and cellular proliferation. We substantiated our in vitro and in cellulo results using Xenopus laevis oocytes to show that mRNA depletion of the unique Slfn gene present in Xenopus, whose protein sequence shares 80% of homology with SLFN5, recapitulates the phenotype observed in human cells preventing the resumption of meiosis during oocyte development.
000186337 536__ $$0G:(DE-HGF)POF4-311$$a311 - Zellbiologie und Tumorbiologie (POF4-311)$$cPOF4-311$$fPOF IV$$x0
000186337 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000186337 7001_ $$0P:(DE-He78)2bd77cc97f0ff50b9d4d6023b0a9bef7$$aHirth, Alexander$$b1$$udkfz
000186337 7001_ $$0P:(DE-He78)b7f9e46da734da5192f0e70a8736de68$$aNeugebauer, Nicolas$$b2
000186337 7001_ $$0P:(DE-He78)a3903480c7232195efbd7b0f6f8564e8$$aKraft, Bianca N$$b3$$udkfz
000186337 7001_ $$0P:(DE-He78)a63bd9276ca497fcfcd476478727a6dc$$aSigismondo, Gianluca$$b4$$udkfz
000186337 7001_ $$0P:(DE-He78)72adf4fc245c4132ec2b75277f99573c$$aCazzola, Anna$$b5
000186337 7001_ $$0P:(DE-He78)44a33c775d0e27db79f8fd9e97a99e0a$$aTessmer, Claudia$$b6$$udkfz
000186337 7001_ $$aDuro, Joana$$b7
000186337 7001_ $$0P:(DE-He78)939d5891259c638c1ab053b1456a578c$$aKrijgsveld, Jeroen$$b8$$udkfz
000186337 7001_ $$0P:(DE-He78)0c4543046185361a644540fee0dad8b1$$aHofmann, Ilse$$b9$$udkfz
000186337 7001_ $$aBerger, Michael$$b10
000186337 7001_ $$aKlüter, Harald$$b11
000186337 7001_ $$0P:(DE-He78)483ad6be7d7fe19e48db9cce86efd70e$$aNiehrs, Christof$$b12$$udkfz
000186337 7001_ $$00000-0003-4100-1125$$aNilsson, Jakob$$b13
000186337 7001_ $$0P:(DE-He78)493c5fbf69f1b20df6f048712f3ad4a0$$aKrämer, Alwin$$b14$$eLast author$$udkfz
000186337 773__ $$0PERI:(DE-600)2842546-7$$a10.1038/s41420-022-01274-0$$gVol. 8, no. 1, p. 484$$n1$$p484$$tCell death discovery$$v8$$x2058-7716$$y2022
000186337 909CO $$ooai:inrepo02.dkfz.de:186337$$pVDB
000186337 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a1a1c4dbebfbcb0569e5142c2f9c8de2$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000186337 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)2bd77cc97f0ff50b9d4d6023b0a9bef7$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000186337 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b7f9e46da734da5192f0e70a8736de68$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000186337 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a3903480c7232195efbd7b0f6f8564e8$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000186337 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a63bd9276ca497fcfcd476478727a6dc$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000186337 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)72adf4fc245c4132ec2b75277f99573c$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000186337 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)44a33c775d0e27db79f8fd9e97a99e0a$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000186337 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)939d5891259c638c1ab053b1456a578c$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000186337 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0c4543046185361a644540fee0dad8b1$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000186337 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)483ad6be7d7fe19e48db9cce86efd70e$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ
000186337 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)493c5fbf69f1b20df6f048712f3ad4a0$$aDeutsches Krebsforschungszentrum$$b14$$kDKFZ
000186337 9131_ $$0G:(DE-HGF)POF4-311$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vZellbiologie und Tumorbiologie$$x0
000186337 9141_ $$y2022
000186337 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-18
000186337 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-18
000186337 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-14T16:19:13Z
000186337 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-14T16:19:13Z
000186337 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-02-14T16:19:13Z
000186337 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-02-14T16:19:13Z
000186337 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-18
000186337 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-18
000186337 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-18
000186337 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-18
000186337 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-18
000186337 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-18
000186337 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-18
000186337 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-18
000186337 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-18
000186337 9202_ $$0I:(DE-He78)A360-20160331$$kA360$$lKKE Mol. Hämatologie/Onkologie$$x0
000186337 9200_ $$0I:(DE-He78)A360-20160331$$kA360$$lKKE Mol. Hämatologie/Onkologie$$x0
000186337 9201_ $$0I:(DE-He78)A360-20160331$$kA360$$lKKE Mol. Hämatologie/Onkologie$$x0
000186337 9201_ $$0I:(DE-He78)A050-20160331$$kA050$$lA050 Molekulare Embryologie$$x1
000186337 9201_ $$0I:(DE-He78)B230-20160331$$kB230$$lB230 Proteomik$$x2
000186337 9201_ $$0I:(DE-He78)W170-20160331$$kW170$$lMonoklonale Antikörper$$x3
000186337 980__ $$ajournal
000186337 980__ $$aVDB
000186337 980__ $$aI:(DE-He78)A360-20160331
000186337 980__ $$aI:(DE-He78)A050-20160331
000186337 980__ $$aI:(DE-He78)B230-20160331
000186337 980__ $$aI:(DE-He78)W170-20160331
000186337 980__ $$aUNRESTRICTED