001     186337
005     20240229145743.0
024 7 _ |a 10.1038/s41420-022-01274-0
|2 doi
024 7 _ |a pmid:36477080
|2 pmid
024 7 _ |a pmc:PMC9729291
|2 pmc
024 7 _ |a altmetric:139918659
|2 altmetric
037 _ _ |a DKFZ-2022-03105
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Vit, Gianmatteo
|0 P:(DE-He78)a1a1c4dbebfbcb0569e5142c2f9c8de2
|b 0
|e First author
245 _ _ |a Human SLFN5 and its Xenopus Laevis ortholog regulate entry into mitosis and oocyte meiotic resumption.
260 _ _ |a London
|c 2022
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1671444595_16478
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:A360#LA:A360# / DKFZ-ZMBH Alliance
520 _ _ |a The Schlafen gene family was first described in mice as a regulator of thymocyte development. Further studies showed involvement of human orthologs in different processes related with viral replication, cellular proliferation, and differentiation. In recent years, a new role for human Slfn11 in DNA replication and chromatin remodeling was described. As commonly observed in many gene families, Slfn paralogs show a tissue-specific expression. This made it difficult to reach conclusions which can be valid in different biological models regarding the function of the different Schlafen proteins. In the present study, we investigate the involvement of SLFN5 in cell-cycle regulation and cell proliferation. A careful analysis of SLFN5 expression revealed that SLFN5 is highly expressed in proliferating tissues and that the protein is ubiquitously present in all the tissues and cell line models we analyzed. Very interestingly, SLFN5 expression oscillates during cell cycle, peaking during S phase. The fact that SLFN5 interacts with protein phosphatase 2A and that SLFN5 depletion causes cell cycle arrest and cellular apoptosis, suggests a direct involvement of this human paralog in cell cycle progression and cellular proliferation. We substantiated our in vitro and in cellulo results using Xenopus laevis oocytes to show that mRNA depletion of the unique Slfn gene present in Xenopus, whose protein sequence shares 80% of homology with SLFN5, recapitulates the phenotype observed in human cells preventing the resumption of meiosis during oocyte development.
536 _ _ |a 311 - Zellbiologie und Tumorbiologie (POF4-311)
|0 G:(DE-HGF)POF4-311
|c POF4-311
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Hirth, Alexander
|0 P:(DE-He78)2bd77cc97f0ff50b9d4d6023b0a9bef7
|b 1
|u dkfz
700 1 _ |a Neugebauer, Nicolas
|0 P:(DE-He78)b7f9e46da734da5192f0e70a8736de68
|b 2
700 1 _ |a Kraft, Bianca N
|0 P:(DE-He78)a3903480c7232195efbd7b0f6f8564e8
|b 3
|u dkfz
700 1 _ |a Sigismondo, Gianluca
|0 P:(DE-He78)a63bd9276ca497fcfcd476478727a6dc
|b 4
|u dkfz
700 1 _ |a Cazzola, Anna
|0 P:(DE-He78)72adf4fc245c4132ec2b75277f99573c
|b 5
700 1 _ |a Tessmer, Claudia
|0 P:(DE-He78)44a33c775d0e27db79f8fd9e97a99e0a
|b 6
|u dkfz
700 1 _ |a Duro, Joana
|b 7
700 1 _ |a Krijgsveld, Jeroen
|0 P:(DE-He78)939d5891259c638c1ab053b1456a578c
|b 8
|u dkfz
700 1 _ |a Hofmann, Ilse
|0 P:(DE-He78)0c4543046185361a644540fee0dad8b1
|b 9
|u dkfz
700 1 _ |a Berger, Michael
|b 10
700 1 _ |a Klüter, Harald
|b 11
700 1 _ |a Niehrs, Christof
|0 P:(DE-He78)483ad6be7d7fe19e48db9cce86efd70e
|b 12
|u dkfz
700 1 _ |a Nilsson, Jakob
|0 0000-0003-4100-1125
|b 13
700 1 _ |a Krämer, Alwin
|0 P:(DE-He78)493c5fbf69f1b20df6f048712f3ad4a0
|b 14
|e Last author
|u dkfz
773 _ _ |a 10.1038/s41420-022-01274-0
|g Vol. 8, no. 1, p. 484
|0 PERI:(DE-600)2842546-7
|n 1
|p 484
|t Cell death discovery
|v 8
|y 2022
|x 2058-7716
909 C O |o oai:inrepo02.dkfz.de:186337
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)a1a1c4dbebfbcb0569e5142c2f9c8de2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)2bd77cc97f0ff50b9d4d6023b0a9bef7
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)b7f9e46da734da5192f0e70a8736de68
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)a3903480c7232195efbd7b0f6f8564e8
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)a63bd9276ca497fcfcd476478727a6dc
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)72adf4fc245c4132ec2b75277f99573c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)44a33c775d0e27db79f8fd9e97a99e0a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)939d5891259c638c1ab053b1456a578c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)0c4543046185361a644540fee0dad8b1
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)483ad6be7d7fe19e48db9cce86efd70e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)493c5fbf69f1b20df6f048712f3ad4a0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-311
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Zellbiologie und Tumorbiologie
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-02-14T16:19:13Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-02-14T16:19:13Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-02-14T16:19:13Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-02-14T16:19:13Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-18
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-18
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-18
920 2 _ |0 I:(DE-He78)A360-20160331
|k A360
|l KKE Mol. Hämatologie/Onkologie
|x 0
920 0 _ |0 I:(DE-He78)A360-20160331
|k A360
|l KKE Mol. Hämatologie/Onkologie
|x 0
920 1 _ |0 I:(DE-He78)A360-20160331
|k A360
|l KKE Mol. Hämatologie/Onkologie
|x 0
920 1 _ |0 I:(DE-He78)A050-20160331
|k A050
|l A050 Molekulare Embryologie
|x 1
920 1 _ |0 I:(DE-He78)B230-20160331
|k B230
|l B230 Proteomik
|x 2
920 1 _ |0 I:(DE-He78)W170-20160331
|k W170
|l Monoklonale Antikörper
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A360-20160331
980 _ _ |a I:(DE-He78)A050-20160331
980 _ _ |a I:(DE-He78)B230-20160331
980 _ _ |a I:(DE-He78)W170-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21