000186400 001__ 186400
000186400 005__ 20240229145746.0
000186400 0247_ $$2doi$$a10.1002/mp.16178
000186400 0247_ $$2pmid$$apmid:36542403
000186400 0247_ $$2ISSN$$a0094-2405
000186400 0247_ $$2ISSN$$a1522-8541
000186400 0247_ $$2ISSN$$a2473-4209
000186400 0247_ $$2altmetric$$aaltmetric:140408345
000186400 037__ $$aDKFZ-2022-03167
000186400 041__ $$aEnglish
000186400 082__ $$a610
000186400 1001_ $$aLysakovski, Peter$$b0
000186400 245__ $$aDevelopment and benchmarking of the first fast Monte Carlo engine for helium ion beam dose calculation: MonteRay.
000186400 260__ $$aCollege Park, Md.$$bAAPM$$c2023
000186400 3367_ $$2DRIVER$$aarticle
000186400 3367_ $$2DataCite$$aOutput Types/Journal article
000186400 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1681886319_17226
000186400 3367_ $$2BibTeX$$aARTICLE
000186400 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000186400 3367_ $$00$$2EndNote$$aJournal Article
000186400 500__ $$a#LA:E210# / 2023 Apr;50(4):2510-2524
000186400 520__ $$aMonte Carlo (MC) simulations are considered the gold-standard for accuracy in radiotherapy dose calculation; however, general purpose MC engines are computationally demanding and require long runtimes. For this reason, several groups have recently developed fast MC systems dedicated mainly to photon and proton external beam therapy, affording both speed and accuracy.To support research and clinical activities at the Heidelberg Ion-beam Therapy Center (HIT) with actively scanned helium ion beams, this work presents MonteRay, the first fast MC dose calculation engine for helium ion therapy.MonteRay is a CPU MC dose calculation engine written in C++, capable of simulating therapeutic proton and helium ion beams. In this work, development steps taken to include helium ion beams in MonteRay are presented. A detailed description of the newly implemented physics models for helium ions, e.g., for multiple coulomb scattering and inelastic nuclear interactions, is provided. MonteRay dose computations of helium ion beams are evaluated using a comprehensive validation dataset, including measurements of spread-out Bragg peaks (SOBPs) with varying penetration depths/field sizes, measurements with an anthropomorphic phantom and FLUKA simulations of a patient plan. Improvement in computational speed is demonstrated in comparison against reference FLUKA simulations.Dosimetric comparisons between MonteRay and measurements demonstrated good agreement. Comparing SOBPs at 5, 12.5 and 20 cm depth, mean absolute percent dose differences were 0.7%, 0.7% and 1.4% respectively. Comparison against measurements behind an anthropomorphic head phantom revealed mean absolute dose differences of about 1.2% (FLUKA: 1.5%) with per voxel errors ranging from -4.5% to 4.1% (FLUKA: -6% to 3%). Computed global 3%/3mm 3D-gamma passing rates of ∼99% were achieved, exceeding those previously reported for an analytical dose engine. Comparisons against FLUKA simulations for a patient plan revealed local 2%/2mm 3D-gamma passing rates of 98%. Compared to FLUKA in voxelized geometries, MonteRay saw run-time reductions ranging from 20x to 60x, depending on the beam's energy.MonteRay, the first fast MC engine dedicated to helium ion therapy, has been successfully developed with a focus on both speed and accuracy. Validations against dosimetric measurements in homogeneous and heterogeneous scenarios and FLUKA MC calculations have proven the validity of the physical models implemented. Timing comparisons have shown significant speedups between 20 and 60 when compared to FLUKA, making MonteRay viable for clinical routine. MonteRay will support research and clinical practice at HIT, e.g., TPS development, validation and treatment design for upcoming clinical trials for raster-scanned helium ion therapy. This article is protected by copyright. All rights reserved.
000186400 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000186400 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000186400 650_7 $$2Other$$aDose Calculation
000186400 650_7 $$2Other$$aFast Monte Carlo
000186400 650_7 $$2Other$$aHelium ions
000186400 650_7 $$2Other$$aRadiotherapy
000186400 7001_ $$0P:(DE-He78)fc22809174118e7f406664bee2fd3554$$aBesuglow, Judith$$b1$$udkfz
000186400 7001_ $$aKopp, Benedikt$$b2
000186400 7001_ $$0P:(DE-HGF)0$$aMein, Stewart$$b3
000186400 7001_ $$0P:(DE-He78)b907c008f5a279f1f3539ca77ec858dc$$aTessonnier, Thomas$$b4$$udkfz
000186400 7001_ $$aFerrari, Alfredo$$b5
000186400 7001_ $$aHaberer, Thomas$$b6
000186400 7001_ $$0P:(DE-He78)8714da4e45acfa36ce87c291443a9218$$aDebus, Jürgen$$b7$$udkfz
000186400 7001_ $$0P:(DE-He78)8d6c2aceda79e88defe1e8c0fcc39d59$$aMairani, Andrea$$b8$$eLast author$$udkfz
000186400 773__ $$0PERI:(DE-600)1466421-5$$a10.1002/mp.16178$$gp. mp.16178$$n4$$p2510-2524$$tMedical physics$$v50$$x0094-2405$$y2023
000186400 909CO $$ooai:inrepo02.dkfz.de:186400$$pVDB
000186400 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)fc22809174118e7f406664bee2fd3554$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000186400 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000186400 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b907c008f5a279f1f3539ca77ec858dc$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000186400 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8714da4e45acfa36ce87c291443a9218$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000186400 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8d6c2aceda79e88defe1e8c0fcc39d59$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000186400 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000186400 9141_ $$y2022
000186400 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-12$$wger
000186400 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-12
000186400 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-12
000186400 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMED PHYS : 2022$$d2023-10-21
000186400 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
000186400 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
000186400 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-21
000186400 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
000186400 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
000186400 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
000186400 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
000186400 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21
000186400 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-10-21
000186400 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-21
000186400 9202_ $$0I:(DE-He78)E210-20160331$$kE210$$lE210 KKE Translationale Radioonkologie$$x0
000186400 9201_ $$0I:(DE-He78)E210-20160331$$kE210$$lE210 KKE Translationale Radioonkologie$$x0
000186400 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x1
000186400 9201_ $$0I:(DE-He78)E050-20160331$$kE050$$lE050 KKE Strahlentherapie$$x2
000186400 980__ $$ajournal
000186400 980__ $$aVDB
000186400 980__ $$aI:(DE-He78)E210-20160331
000186400 980__ $$aI:(DE-He78)HD01-20160331
000186400 980__ $$aI:(DE-He78)E050-20160331
000186400 980__ $$aUNRESTRICTED