Home > Publications database > Development and benchmarking of the first fast Monte Carlo engine for helium ion beam dose calculation: MonteRay. > print |
001 | 186400 | ||
005 | 20240229145746.0 | ||
024 | 7 | _ | |a 10.1002/mp.16178 |2 doi |
024 | 7 | _ | |a pmid:36542403 |2 pmid |
024 | 7 | _ | |a 0094-2405 |2 ISSN |
024 | 7 | _ | |a 1522-8541 |2 ISSN |
024 | 7 | _ | |a 2473-4209 |2 ISSN |
024 | 7 | _ | |a altmetric:140408345 |2 altmetric |
037 | _ | _ | |a DKFZ-2022-03167 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Lysakovski, Peter |b 0 |
245 | _ | _ | |a Development and benchmarking of the first fast Monte Carlo engine for helium ion beam dose calculation: MonteRay. |
260 | _ | _ | |a College Park, Md. |c 2023 |b AAPM |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1681886319_17226 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a #LA:E210# / 2023 Apr;50(4):2510-2524 |
520 | _ | _ | |a Monte Carlo (MC) simulations are considered the gold-standard for accuracy in radiotherapy dose calculation; however, general purpose MC engines are computationally demanding and require long runtimes. For this reason, several groups have recently developed fast MC systems dedicated mainly to photon and proton external beam therapy, affording both speed and accuracy.To support research and clinical activities at the Heidelberg Ion-beam Therapy Center (HIT) with actively scanned helium ion beams, this work presents MonteRay, the first fast MC dose calculation engine for helium ion therapy.MonteRay is a CPU MC dose calculation engine written in C++, capable of simulating therapeutic proton and helium ion beams. In this work, development steps taken to include helium ion beams in MonteRay are presented. A detailed description of the newly implemented physics models for helium ions, e.g., for multiple coulomb scattering and inelastic nuclear interactions, is provided. MonteRay dose computations of helium ion beams are evaluated using a comprehensive validation dataset, including measurements of spread-out Bragg peaks (SOBPs) with varying penetration depths/field sizes, measurements with an anthropomorphic phantom and FLUKA simulations of a patient plan. Improvement in computational speed is demonstrated in comparison against reference FLUKA simulations.Dosimetric comparisons between MonteRay and measurements demonstrated good agreement. Comparing SOBPs at 5, 12.5 and 20 cm depth, mean absolute percent dose differences were 0.7%, 0.7% and 1.4% respectively. Comparison against measurements behind an anthropomorphic head phantom revealed mean absolute dose differences of about 1.2% (FLUKA: 1.5%) with per voxel errors ranging from -4.5% to 4.1% (FLUKA: -6% to 3%). Computed global 3%/3mm 3D-gamma passing rates of ∼99% were achieved, exceeding those previously reported for an analytical dose engine. Comparisons against FLUKA simulations for a patient plan revealed local 2%/2mm 3D-gamma passing rates of 98%. Compared to FLUKA in voxelized geometries, MonteRay saw run-time reductions ranging from 20x to 60x, depending on the beam's energy.MonteRay, the first fast MC engine dedicated to helium ion therapy, has been successfully developed with a focus on both speed and accuracy. Validations against dosimetric measurements in homogeneous and heterogeneous scenarios and FLUKA MC calculations have proven the validity of the physical models implemented. Timing comparisons have shown significant speedups between 20 and 60 when compared to FLUKA, making MonteRay viable for clinical routine. MonteRay will support research and clinical practice at HIT, e.g., TPS development, validation and treatment design for upcoming clinical trials for raster-scanned helium ion therapy. This article is protected by copyright. All rights reserved. |
536 | _ | _ | |a 315 - Bildgebung und Radioonkologie (POF4-315) |0 G:(DE-HGF)POF4-315 |c POF4-315 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a Dose Calculation |2 Other |
650 | _ | 7 | |a Fast Monte Carlo |2 Other |
650 | _ | 7 | |a Helium ions |2 Other |
650 | _ | 7 | |a Radiotherapy |2 Other |
700 | 1 | _ | |a Besuglow, Judith |0 P:(DE-He78)fc22809174118e7f406664bee2fd3554 |b 1 |u dkfz |
700 | 1 | _ | |a Kopp, Benedikt |b 2 |
700 | 1 | _ | |a Mein, Stewart |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Tessonnier, Thomas |0 P:(DE-He78)b907c008f5a279f1f3539ca77ec858dc |b 4 |u dkfz |
700 | 1 | _ | |a Ferrari, Alfredo |b 5 |
700 | 1 | _ | |a Haberer, Thomas |b 6 |
700 | 1 | _ | |a Debus, Jürgen |0 P:(DE-He78)8714da4e45acfa36ce87c291443a9218 |b 7 |u dkfz |
700 | 1 | _ | |a Mairani, Andrea |0 P:(DE-He78)8d6c2aceda79e88defe1e8c0fcc39d59 |b 8 |e Last author |u dkfz |
773 | _ | _ | |a 10.1002/mp.16178 |g p. mp.16178 |0 PERI:(DE-600)1466421-5 |n 4 |p 2510-2524 |t Medical physics |v 50 |y 2023 |x 0094-2405 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:186400 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-He78)fc22809174118e7f406664bee2fd3554 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 4 |6 P:(DE-He78)b907c008f5a279f1f3539ca77ec858dc |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 7 |6 P:(DE-He78)8714da4e45acfa36ce87c291443a9218 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 8 |6 P:(DE-He78)8d6c2aceda79e88defe1e8c0fcc39d59 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-315 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Bildgebung und Radioonkologie |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2022-11-12 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-12 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MED PHYS : 2022 |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-21 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2023-10-21 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-10-21 |
920 | 2 | _ | |0 I:(DE-He78)E210-20160331 |k E210 |l E210 KKE Translationale Radioonkologie |x 0 |
920 | 1 | _ | |0 I:(DE-He78)E210-20160331 |k E210 |l E210 KKE Translationale Radioonkologie |x 0 |
920 | 1 | _ | |0 I:(DE-He78)HD01-20160331 |k HD01 |l DKTK HD zentral |x 1 |
920 | 1 | _ | |0 I:(DE-He78)E050-20160331 |k E050 |l E050 KKE Strahlentherapie |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)E210-20160331 |
980 | _ | _ | |a I:(DE-He78)HD01-20160331 |
980 | _ | _ | |a I:(DE-He78)E050-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|