000186489 001__ 186489
000186489 005__ 20240902131340.0
000186489 0247_ $$2doi$$a10.1016/j.zemedi.2022.11.012
000186489 0247_ $$2pmid$$apmid:36577627
000186489 0247_ $$2ISSN$$a0040-5973
000186489 0247_ $$2ISSN$$a0939-3889
000186489 0247_ $$2ISSN$$a1876-4436
000186489 037__ $$aDKFZ-2022-03210
000186489 041__ $$aEnglish
000186489 082__ $$a610
000186489 1001_ $$0P:(DE-He78)49d2503cabac0686951637454186171f$$aHartmann, Günther$$b0$$eFirst author$$udkfz
000186489 245__ $$aNote on uncertainty in Monte Carlo dose calculations and its relation to microdosimetry.
000186489 260__ $$aAmsterdam$$bElsevier, Urban & Fischer$$c2024
000186489 264_1 $$2Crossref$$3print$$bElsevier BV$$c2022-12-01
000186489 3367_ $$2DRIVER$$aarticle
000186489 3367_ $$2DataCite$$aOutput Types/Journal article
000186489 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1725275569_17193
000186489 3367_ $$2BibTeX$$aARTICLE
000186489 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000186489 3367_ $$00$$2EndNote$$aJournal Article
000186489 500__ $$a2024 Aug;34(3):468-476 / #EA:E040# / Short Communication
000186489 520__ $$aThe Type A standard uncertainty in Monte Carlo (MC) dose calculations is usually determined using the 'history by history' method. Its applicability is based on the assumption that the central limit theorem (CLT) can be applied such that the dispersion of repeated calculations can be modeled by a Normal distribution. The justification for this assumption, however, is not obvious. The concept of stochastic quantities used in the field of microdosimetry offers an alternative approach to assess uncertainty. This leads to a new and simple expression.The value of the MC determined absorbed dose is considered a random variable which is comparable to the stochastic quantity specific energy, z. This quantity plays an important role in microdosimetry and in the definition of the quantity absorbed dose, D. One of the main features of z is that it is itself the product of two other random variables, specifically of the mean dose contribution in a 'single event' and of the mean number of such events. The term 'single event' signifies the sum of energies imparted by all correlated particles to the matter in a given volume. The similarity between the MC calculated absorbed dose and the specific energy is used to establish the 'event by event' method for the determination of the uncertainty. MC dose calculations were performed to test and compare both methods.It is shown that the dispersion of values obtained by MC dose calculations indeed depend on the product of the mean absorbed dose per event, and the number of events. Applying methods to obtain the variance of a product of two random variables, a simple formula for the assessment of uncertainties is obtained which is slightly different from the 'history by history' method. Interestingly, both formulas yield indistinguishable results. This finding is attributed to the large number of histories used in MC simulations. Due on the fact that the values of a MC calculated absorbed dose are the product of two approximately Normal distributions it can be demonstrated that the resulting product is also approximately normally distributed.The event by event approach appears to be more suitable than the history by history approach because it takes into account the randomness of the number of events involved in MC dose calculations. Under the condition of large numbers of histories, however, both approaches lead to the same simple expression for the determination of uncertainty in MC dose calculations. It is suggested to replace the formula currently used by the new expression. Finally, it turned out that the concept and ideas that were developed in the field of microdosimetry already 50 years ago can be usefully applied also in MC calculations.
000186489 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000186489 542__ $$2Crossref$$i2022-12-01$$uhttps://www.elsevier.com/tdm/userlicense/1.0/
000186489 542__ $$2Crossref$$i2022-11-30$$uhttp://creativecommons.org/licenses/by-nc-nd/4.0/
000186489 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000186489 650_7 $$2Other$$aAbsorbed dose
000186489 650_7 $$2Other$$aMicrodosimetry
000186489 650_7 $$2Other$$aMonte Carlo calculation
000186489 650_7 $$2Other$$aSpecific energy
000186489 650_7 $$2Other$$aUncertainty
000186489 7001_ $$aMenzel, Hans G$$b1
000186489 77318 $$2Crossref$$3journal-article$$a10.1016/j.zemedi.2022.11.012$$bElsevier BV$$d2022-12-01$$tZeitschrift für Medizinische Physik$$x0939-3889$$y2022
000186489 773__ $$0PERI:(DE-600)2231492-1$$a10.1016/j.zemedi.2022.11.012$$gp. S0939388922001337$$n3$$p468-476$$tZeitschrift für medizinische Physik$$v34$$x0939-3889$$y2024
000186489 909CO $$ooai:inrepo02.dkfz.de:186489$$pVDB
000186489 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)49d2503cabac0686951637454186171f$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000186489 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000186489 9141_ $$y2022
000186489 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bZ MED PHYS : 2021$$d2022-11-13
000186489 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-13
000186489 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-13
000186489 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-13
000186489 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-13
000186489 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bZ MED PHYS : 2021$$d2022-11-13
000186489 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000186489 9200_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000186489 980__ $$ajournal
000186489 980__ $$aVDB
000186489 980__ $$aI:(DE-He78)E040-20160331
000186489 980__ $$aUNRESTRICTED
000186489 999C5 $$2Crossref$$uEvaluation of measurement data—Guide to the expression of uncertainty in measurement. JCGM 2008.
000186489 999C5 $$1Sempau$$2Crossref$$9-- missing cx lookup --$$a10.1088/0031-9155/45/8/315$$p2263 -$$tPhys Med Biol$$v45$$y2000
000186489 999C5 $$1Walters$$2Crossref$$9-- missing cx lookup --$$a10.1118/1.1517611$$p2745 -$$tMed Phys$$v29$$y2002
000186489 999C5 $$1Sempau$$2Crossref$$9-- missing cx lookup --$$a10.1088/0031-9155/46/4/318$$p1163 -$$tPhys Med Biol$$v46$$y2001
000186489 999C5 $$1Andreo$$2Crossref$$9-- missing cx lookup --$$a10.1088/0031-9155/36/7/001$$p861 -$$tPhys Med Biol$$v36$$y1991
000186489 999C5 $$1Fischer$$2Crossref$$oFischer 2021$$y2021
000186489 999C5 $$2Crossref$$uICRU. Fundamental Quantities and Units for Ionizing Radiation (Revised), ICRU Report 85a. Bethesda: International Commission on Radiation Units and Measurements; 2011.
000186489 999C5 $$2Crossref$$uKellerer AM. Mikrodosimetrie, Grundlagen einer Theorie der Strahlenqualität. GSF B-1 (1968)
000186489 999C5 $$2Crossref$$uICRU. Microdosimetry, ICRU Report 36. Bethesda: International Commission on Radiation Units and Measurements; 1983.
000186489 999C5 $$1Carlsson$$2Crossref$$oCarlsson 1985$$y1985
000186489 999C5 $$1Kawrakow$$2Crossref$$oKawrakow 2017$$y2017
000186489 999C5 $$1Goodman$$2Crossref$$9-- missing cx lookup --$$a10.1080/01621459.1960.10483369$$p708 -$$tJ Am Stat Assoc$$v55$$y1960
000186489 999C5 $$1Ware$$2Crossref$$oWare 2003$$y2003
000186489 999C5 $$1Kawrakow$$2Crossref$$oKawrakow 2006$$y2006
000186489 999C5 $$1Hartmann$$2Crossref$$9-- missing cx lookup --$$a10.1002/mp.15266$$p7461 -$$tMed Phys$$v48$$y2021
000186489 999C5 $$1Ma$$2Crossref$$9-- missing cx lookup --$$a10.1088/0031-9155/47/10/305$$p1671 -$$tPhys Med Biol$$v47$$y2002