001     186489
005     20240902131340.0
024 7 _ |a 10.1016/j.zemedi.2022.11.012
|2 doi
024 7 _ |a pmid:36577627
|2 pmid
024 7 _ |a 0040-5973
|2 ISSN
024 7 _ |a 0939-3889
|2 ISSN
024 7 _ |a 1876-4436
|2 ISSN
037 _ _ |a DKFZ-2022-03210
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Hartmann, Günther
|0 P:(DE-He78)49d2503cabac0686951637454186171f
|b 0
|e First author
|u dkfz
245 _ _ |a Note on uncertainty in Monte Carlo dose calculations and its relation to microdosimetry.
260 _ _ |a Amsterdam
|c 2024
|b Elsevier, Urban & Fischer
264 _ 1 |3 print
|2 Crossref
|b Elsevier BV
|c 2022-12-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1725275569_17193
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2024 Aug;34(3):468-476 / #EA:E040# / Short Communication
520 _ _ |a The Type A standard uncertainty in Monte Carlo (MC) dose calculations is usually determined using the 'history by history' method. Its applicability is based on the assumption that the central limit theorem (CLT) can be applied such that the dispersion of repeated calculations can be modeled by a Normal distribution. The justification for this assumption, however, is not obvious. The concept of stochastic quantities used in the field of microdosimetry offers an alternative approach to assess uncertainty. This leads to a new and simple expression.The value of the MC determined absorbed dose is considered a random variable which is comparable to the stochastic quantity specific energy, z. This quantity plays an important role in microdosimetry and in the definition of the quantity absorbed dose, D. One of the main features of z is that it is itself the product of two other random variables, specifically of the mean dose contribution in a 'single event' and of the mean number of such events. The term 'single event' signifies the sum of energies imparted by all correlated particles to the matter in a given volume. The similarity between the MC calculated absorbed dose and the specific energy is used to establish the 'event by event' method for the determination of the uncertainty. MC dose calculations were performed to test and compare both methods.It is shown that the dispersion of values obtained by MC dose calculations indeed depend on the product of the mean absorbed dose per event, and the number of events. Applying methods to obtain the variance of a product of two random variables, a simple formula for the assessment of uncertainties is obtained which is slightly different from the 'history by history' method. Interestingly, both formulas yield indistinguishable results. This finding is attributed to the large number of histories used in MC simulations. Due on the fact that the values of a MC calculated absorbed dose are the product of two approximately Normal distributions it can be demonstrated that the resulting product is also approximately normally distributed.The event by event approach appears to be more suitable than the history by history approach because it takes into account the randomness of the number of events involved in MC dose calculations. Under the condition of large numbers of histories, however, both approaches lead to the same simple expression for the determination of uncertainty in MC dose calculations. It is suggested to replace the formula currently used by the new expression. Finally, it turned out that the concept and ideas that were developed in the field of microdosimetry already 50 years ago can be usefully applied also in MC calculations.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
542 _ _ |i 2022-12-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
542 _ _ |i 2022-11-30
|2 Crossref
|u http://creativecommons.org/licenses/by-nc-nd/4.0/
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Absorbed dose
|2 Other
650 _ 7 |a Microdosimetry
|2 Other
650 _ 7 |a Monte Carlo calculation
|2 Other
650 _ 7 |a Specific energy
|2 Other
650 _ 7 |a Uncertainty
|2 Other
700 1 _ |a Menzel, Hans G
|b 1
773 1 8 |a 10.1016/j.zemedi.2022.11.012
|b Elsevier BV
|d 2022-12-01
|3 journal-article
|2 Crossref
|t Zeitschrift für Medizinische Physik
|y 2022
|x 0939-3889
773 _ _ |a 10.1016/j.zemedi.2022.11.012
|g p. S0939388922001337
|0 PERI:(DE-600)2231492-1
|n 3
|p 468-476
|t Zeitschrift für medizinische Physik
|v 34
|y 2024
|x 0939-3889
909 C O |p VDB
|o oai:inrepo02.dkfz.de:186489
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)49d2503cabac0686951637454186171f
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2022
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b Z MED PHYS : 2021
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-13
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b Z MED PHYS : 2021
|d 2022-11-13
920 1 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
920 0 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E040-20160331
980 _ _ |a UNRESTRICTED
999 C 5 |2 Crossref
|u Evaluation of measurement data—Guide to the expression of uncertainty in measurement. JCGM 2008.
999 C 5 |a 10.1088/0031-9155/45/8/315
|9 -- missing cx lookup --
|1 Sempau
|p 2263 -
|2 Crossref
|t Phys Med Biol
|v 45
|y 2000
999 C 5 |a 10.1118/1.1517611
|9 -- missing cx lookup --
|1 Walters
|p 2745 -
|2 Crossref
|t Med Phys
|v 29
|y 2002
999 C 5 |a 10.1088/0031-9155/46/4/318
|9 -- missing cx lookup --
|1 Sempau
|p 1163 -
|2 Crossref
|t Phys Med Biol
|v 46
|y 2001
999 C 5 |a 10.1088/0031-9155/36/7/001
|9 -- missing cx lookup --
|1 Andreo
|p 861 -
|2 Crossref
|t Phys Med Biol
|v 36
|y 1991
999 C 5 |1 Fischer
|y 2021
|2 Crossref
|o Fischer 2021
999 C 5 |2 Crossref
|u ICRU. Fundamental Quantities and Units for Ionizing Radiation (Revised), ICRU Report 85a. Bethesda: International Commission on Radiation Units and Measurements; 2011.
999 C 5 |2 Crossref
|u Kellerer AM. Mikrodosimetrie, Grundlagen einer Theorie der Strahlenqualität. GSF B-1 (1968)
999 C 5 |2 Crossref
|u ICRU. Microdosimetry, ICRU Report 36. Bethesda: International Commission on Radiation Units and Measurements; 1983.
999 C 5 |1 Carlsson
|y 1985
|2 Crossref
|o Carlsson 1985
999 C 5 |1 Kawrakow
|y 2017
|2 Crossref
|o Kawrakow 2017
999 C 5 |a 10.1080/01621459.1960.10483369
|9 -- missing cx lookup --
|1 Goodman
|p 708 -
|2 Crossref
|t J Am Stat Assoc
|v 55
|y 1960
999 C 5 |1 Ware
|y 2003
|2 Crossref
|o Ware 2003
999 C 5 |1 Kawrakow
|y 2006
|2 Crossref
|o Kawrakow 2006
999 C 5 |a 10.1002/mp.15266
|9 -- missing cx lookup --
|1 Hartmann
|p 7461 -
|2 Crossref
|t Med Phys
|v 48
|y 2021
999 C 5 |a 10.1088/0031-9155/47/10/305
|9 -- missing cx lookup --
|1 Ma
|p 1671 -
|2 Crossref
|t Phys Med Biol
|v 47
|y 2002


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21