000186493 001__ 186493
000186493 005__ 20240229145749.0
000186493 0247_ $$2doi$$a10.1093/bioinformatics/btac831
000186493 0247_ $$2pmid$$apmid:36576005
000186493 0247_ $$2ISSN$$a0266-7061
000186493 0247_ $$2ISSN$$a1367-4803
000186493 0247_ $$2ISSN$$a1367-4811
000186493 0247_ $$2ISSN$$a1460-2059
000186493 0247_ $$2altmetric$$aaltmetric:140607402
000186493 037__ $$aDKFZ-2022-03214
000186493 041__ $$aEnglish
000186493 082__ $$a570
000186493 1001_ $$0P:(DE-He78)ef4994640c05e69b9a1bea4aeeddf1bc$$aUlrich, Elias$$b0$$eFirst author$$udkfz
000186493 245__ $$aRevana: a comprehensive tool for regulatory variant analysis and visualization of cancer genomes.
000186493 260__ $$aOxford$$bOxford Univ. Press$$c2023
000186493 3367_ $$2DRIVER$$aarticle
000186493 3367_ $$2DataCite$$aOutput Types/Journal article
000186493 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673357315_31349
000186493 3367_ $$2BibTeX$$aARTICLE
000186493 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000186493 3367_ $$00$$2EndNote$$aJournal Article
000186493 500__ $$a#EA:B062#LA:B062# / 2023 Jan 1;39(1):btac831
000186493 520__ $$aAs non-coding driver mutations move more into the focus of cancer research, a comprehensive and easy to use software solution for regulatory variant analysis and data visualization is highly relevant. The interpretation of regulatory variants in large tumor genome cohorts requires specialized analysis and visualization of multiple layers of data, including for example breakpoints of structural variants, enhancer elements and additional available gene locus annotation, in the context of changes in gene expression.We introduce a user-friendly tool, Revana (REgulatory Variant ANAlysis), that can aggregate and visually represent regulatory variants from cancer genomes in a gene-centric manner. It requires whole genome (WGS) and RNA sequencing (RNA-Seq) data of a cohort of tumor samples and creates interactive HTML reports summarizing the most important regulatory events.Revana is implemented in R and JavaScript. It is available for download as an R package under <https://github.com/KiTZ-Heidelberg/revana>. Sample results can be viewed under <https://github.com/KiTZ-Heidelberg/revana-demo-report> and a short walkthrough is available under <https://github.com/KiTZ-Heidelberg/revana-demo-data>.Supplementary data are available at Bioinformatics online.
000186493 536__ $$0G:(DE-HGF)POF4-312$$a312 - Funktionelle und strukturelle Genomforschung (POF4-312)$$cPOF4-312$$fPOF IV$$x0
000186493 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000186493 7001_ $$0P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aPfister, Stefan M$$b1$$udkfz
000186493 7001_ $$0P:(DE-He78)bff9e3e3d86865d2b0836bb8f3ce98f3$$aJäger, Natalie$$b2$$eLast author$$udkfz
000186493 773__ $$0PERI:(DE-600)1468345-3$$a10.1093/bioinformatics/btac831$$gp. btac831$$n1$$pbtac831$$tBioinformatics$$v39$$x0266-7061$$y2023
000186493 909CO $$ooai:inrepo02.dkfz.de:186493$$pVDB
000186493 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)ef4994640c05e69b9a1bea4aeeddf1bc$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000186493 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000186493 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)bff9e3e3d86865d2b0836bb8f3ce98f3$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000186493 9131_ $$0G:(DE-HGF)POF4-312$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunktionelle und strukturelle Genomforschung$$x0
000186493 9141_ $$y2022
000186493 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-09
000186493 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-09
000186493 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-09
000186493 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
000186493 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
000186493 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
000186493 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-21
000186493 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-07-11T10:36:43Z
000186493 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-07-11T10:36:43Z
000186493 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-07-11T10:36:43Z
000186493 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
000186493 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21
000186493 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
000186493 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21
000186493 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOINFORMATICS : 2022$$d2023-10-21
000186493 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
000186493 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
000186493 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBIOINFORMATICS : 2022$$d2023-10-21
000186493 9202_ $$0I:(DE-He78)B062-20160331$$kB062$$lB062 Pädiatrische Neuroonkologie$$x0
000186493 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lB062 Pädiatrische Neuroonkologie$$x0
000186493 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x1
000186493 9200_ $$0I:(DE-He78)B062-20160331$$kB062$$lB062 Pädiatrische Neuroonkologie$$x0
000186493 980__ $$ajournal
000186493 980__ $$aVDB
000186493 980__ $$aI:(DE-He78)B062-20160331
000186493 980__ $$aI:(DE-He78)HD01-20160331
000186493 980__ $$aUNRESTRICTED