001     186493
005     20240229145749.0
024 7 _ |a 10.1093/bioinformatics/btac831
|2 doi
024 7 _ |a pmid:36576005
|2 pmid
024 7 _ |a 0266-7061
|2 ISSN
024 7 _ |a 1367-4803
|2 ISSN
024 7 _ |a 1367-4811
|2 ISSN
024 7 _ |a 1460-2059
|2 ISSN
024 7 _ |a altmetric:140607402
|2 altmetric
037 _ _ |a DKFZ-2022-03214
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Ulrich, Elias
|0 P:(DE-He78)ef4994640c05e69b9a1bea4aeeddf1bc
|b 0
|e First author
|u dkfz
245 _ _ |a Revana: a comprehensive tool for regulatory variant analysis and visualization of cancer genomes.
260 _ _ |a Oxford
|c 2023
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1673357315_31349
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:B062#LA:B062# / 2023 Jan 1;39(1):btac831
520 _ _ |a As non-coding driver mutations move more into the focus of cancer research, a comprehensive and easy to use software solution for regulatory variant analysis and data visualization is highly relevant. The interpretation of regulatory variants in large tumor genome cohorts requires specialized analysis and visualization of multiple layers of data, including for example breakpoints of structural variants, enhancer elements and additional available gene locus annotation, in the context of changes in gene expression.We introduce a user-friendly tool, Revana (REgulatory Variant ANAlysis), that can aggregate and visually represent regulatory variants from cancer genomes in a gene-centric manner. It requires whole genome (WGS) and RNA sequencing (RNA-Seq) data of a cohort of tumor samples and creates interactive HTML reports summarizing the most important regulatory events.Revana is implemented in R and JavaScript. It is available for download as an R package under . Sample results can be viewed under and a short walkthrough is available under .Supplementary data are available at Bioinformatics online.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Pfister, Stefan M
|0 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
|b 1
|u dkfz
700 1 _ |a Jäger, Natalie
|0 P:(DE-He78)bff9e3e3d86865d2b0836bb8f3ce98f3
|b 2
|e Last author
|u dkfz
773 _ _ |a 10.1093/bioinformatics/btac831
|g p. btac831
|0 PERI:(DE-600)1468345-3
|n 1
|p btac831
|t Bioinformatics
|v 39
|y 2023
|x 0266-7061
909 C O |p VDB
|o oai:inrepo02.dkfz.de:186493
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)ef4994640c05e69b9a1bea4aeeddf1bc
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)bff9e3e3d86865d2b0836bb8f3ce98f3
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-09
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-07-11T10:36:43Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-07-11T10:36:43Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-07-11T10:36:43Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOINFORMATICS : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b BIOINFORMATICS : 2022
|d 2023-10-21
920 2 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 0
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 0
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 1
920 0 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21