TY - JOUR AU - Huybrechts, Inge AU - Rauber, Fernanda AU - Nicolas, Geneviève AU - Casagrande, Corinne AU - Kliemann, Nathalie AU - Wedekind, Roland AU - Biessy, Carine AU - Scalbert, Augustin AU - Touvier, Mathilde AU - Aleksandrova, Krasimira AU - Jakszyn, Paula AU - Skeie, Guri AU - Bajracharya, Rashmita AU - Boer, Jolanda M A AU - Borné, Yan AU - Chajes, Veronique AU - Dahm, Christina C AU - Dansero, Lucia AU - Guevara, Marcela AU - Heath, Alicia K AU - Ibsen, Daniel B AU - Papier, Keren AU - Katzke, Verena AU - Kyrø, Cecilie AU - Masala, Giovanna AU - Molina-Montes, Esther AU - Robinson, Oliver J K AU - Santiuste de Pablos, Carmen AU - Schulze, Matthias B AU - Simeon, Vittorio AU - Sonestedt, Emily AU - Tjønneland, Anne AU - Tumino, Rosario AU - van der Schouw, Yvonne T AU - Verschuren, W M Monique AU - Vozar, Beatrice AU - Winkvist, Anna AU - Gunter, Marc J AU - Monteiro, Carlos A AU - Millett, Christopher AU - Levy, Renata Bertazzi TI - Characterization of the degree of food processing in the European Prospective Investigation into Cancer and Nutrition: Application of the Nova classification and validation using selected biomarkers of food processing. JO - Frontiers in nutrition VL - 9 SN - 2296-861X CY - Lausanne PB - Frontiers Media M1 - DKFZ-2023-00004 SP - 1035580 PY - 2022 AB - Epidemiological studies have demonstrated an association between the degree of food processing in our diet and the risk of various chronic diseases. Much of this evidence is based on the international Nova classification system, which classifies food into four groups based on the type of processing: (1) Unprocessed and minimally processed foods, (2) Processed culinary ingredients, (3) Processed foods, and (4) 'Ultra-processed' foods (UPF). The ability of the Nova classification to accurately characterise the degree of food processing across consumption patterns in various European populations has not been investigated so far. Therefore, we applied the Nova coding to data from the European Prospective Investigation into Cancer and Nutrition (EPIC) in order to characterize the degree of food processing in our diet across European populations with diverse cultural and socio-economic backgrounds and to validate this Nova classification through comparison with objective biomarker measurements.After grouping foods in the EPIC dataset according to the Nova classification, a total of 476,768 participants in the EPIC cohort (71.5 KW - EPIC (Other) KW - Nova (Other) KW - biomarkers (Other) KW - elaidic acid (Other) KW - food processing (Other) KW - syringol (Other) LB - PUB:(DE-HGF)16 C6 - pmid:36590209 C2 - pmc:PMC9800919 DO - DOI:10.3389/fnut.2022.1035580 UR - https://inrepo02.dkfz.de/record/186551 ER -